A New Synthetic Route to 1,3-Benzoxazepines

Kee-Jung Lee,* Dae Ock Choi, Seongkon Kim, Jae Uk Jeong, Hokoon Park Division of Chemistry, Korea Institute of Science and Technology, P.O. Box 131 Cheongryang, Seoul, Korea

A novel method for the synthesis of 5-hydroxy-1,3-benzoxazepines 5 utilizing the Staudinger reaction followed by an intramolecular aza-Wittig reaction, from o-acyloxyphenacyl azides 2 is reported.

In recent years, there has been a significant interest in the chemistry of iminophosphoranes (phosphazenes).¹ These compounds can be obtained by reaction of tertiary phosphines with organic azides as originally reported by Staudinger.² Iminophosphoranes are known to react with carbonyl compounds to give linear³ or cyclic⁴ imines, and this method has been used for the preparation of quinolines,⁵ isoquinolines,⁶ benzoxazoles,⁷ pyrazines,⁸ and triazoles.⁹

Continuing our studies on the synthesis of heterocyclic compounds, 10 we considered the reaction of o-acyloxyphenacyl azides 2 with triethyl phosphite as an entry to a new type of iminophosphoranes of potential utility in heterocyclic synthesis. We now describe a new method for the synthesis of the hitherto unknown 5-hydroxy-1,3-benzoxazepines 5 based upon the Staudinger reaction followed by an intramolecular aza-Wittig reaction of o-acyloxyphenacyl azides 2. Two general methods for the preparation of 1,3-benzoxazepine ring system have been reported. The first method is based on the photo rearrangement of isoquinoline N-oxides, 11,12 whereas the second one involves the thermal rearrangement of azido chromenes.

The starting compounds, o-acyloxyphenacyl azides 2b-d, were obtained by treatment of o-hydroxyphenacyl azide (1)¹⁵ with acid chlorides in the presence of trieth-

ylamine in tetrahydrofuran. On the other hand, 2a was prepared by treatment of 1 with excess acetic formic anhydride in the presence of pyridine. The reaction of o-acyloxyphenacyl azides 2 with an equimolecular amount of triethyl phosphite in benzene at 5-10°C for 0.5h, and then heating to reflux temperature gave the desired 5-hydroxy-1,3-benzoxazepines 5 in yields ranging from 30 to 74%. The isolation of iminophosphoranes 3 was unsuccessful⁸ under various reaction conditions.

The formation of the cyclization products 5 can be assumed to proceed via the expected phosphorane intermediate 3 with the evolution of nitrogen followed by an intramolecular aza-Wittig reaction between phosphorane and ester carbonyl group, followed by spontaneous tautomerization. This assumption may be supported by the isolation of the rearrangement product, N-(o-hydroxy-phenacyl)benzamide (6), when the reaction of o-benzoyl-oxyphenacyl azide (2d) with triethyl phosphite was carried out. Similar rearrangement pathway has been reported in the reaction of o-azidophenyl benzoate with hexamethylphosphoric triamide.

Structural elucidation of 5 is accomplished on the basis of spectral data¹¹ and microanalyses. The IR spectra show absorption in the OH stretching region of $\nu = 3047-3085 \, \mathrm{cm}^{-1}$. The ¹H-NMR spectra of 5 are also consistent with the structure assigned. These values are in

Table 1. o-Acyloxyphenacyl Azides 2 Prepared

Product	Reaction Time (h)	Yield ^a (%)	$ \begin{array}{c} \text{mp} \\ (^{\circ}\text{C})^{\text{b}} \end{array} $	Molecular Formula ^c	1 H-NMR (CDCl ₃ /TMS) δ , J (Hz)
2a	2	91	oil	C ₉ H ₇ N ₃ O ₃ (205.2)	4.43 (s, 2H, CH ₂), 7.10–7.93 (m, 4H _{arom}),
2b	1	95	54–55	$C_{10}H_9N_3O_3$ (219.2)	8.33 (s, 1 H, CHO) 2.33 (s, 3 H, CH ₃), 4.40 (s, 2 H, CH ₂), 7.07–
2c	1	79	50-51	$C_{12}H_{11}N_3O_3$ (245.2)	7.87 (m, 4H _{arom}) 1.17 (m, 4H, CH ₂ -cyclopropyl), 1.82 (m, 1H, CH-cyclopropyl), 4.36 (s, 2H, CH ₂), 7.03-
2d	1.5	90	59-60	$C_{15}H_{11}N_3O_3$ (281.3)	7.83 (m, 4H _{arom}) 4.36 (s, 2H, CH ₂), 7.17–8.33 (m, 9H _{arom})

^a Yield of pure isolated product, except 2a.

b Recrystallized from Et₂O/petroleum ether.

^c Satisfactory microanalyses obtained: $C \pm 0.28$, $H \pm 0.07$, $N \pm 0.30$, except for 2a, which could not be purified.

SYNTHESIS

Table 2. 5-Hydroxy-1,3-benzoxazepines 5 Prepared

Prod- uct	Reaction Time (h)	Yield ^a (%)	mp (°C) (solvent)	Molecular Formula ^b	IR (KBr) v _{OH} (cm ⁻¹)	1 H-NMR (DMSO- d_{6} + CDCl ₃ /TMS) δ , J (Hz)	MS (70 eV) m/z (%)
5a	2	30	157–158 (Et ₂ O)	C ₉ H ₇ NO ₂ (161.2)	3047	6.86-7.19 (m, 3 H _{arom}), 7.60 (s, 1 H, H-4), 7.68 (m, 1 H _{arom}), 7.98 (s, 1 H, H-2), 9.92 (s, 1 H, OH)	161 (M ⁺ , 21), 134 (29), 133 (22), 106 (13), 105 (100), 104 (29), 78 (42), 77 (45), 76 (23), 65 (19), 63 (22)
5b	2	74	160–161 (Et ₂ O)	C ₁₀ H ₉ NO ₂ (175.2)	3050	2.47 (s, 3H, CH ₃), 6.86-7.29 (m, 3H _{arom}), 7.45 (s, 1H, H-4), 7.57 (m, 1H _{arom}), 10.33 (s, 1H, OH)	175 (M ⁺ , 43), 134 (29), 133 (15), 105 (100), 104 (15), 91 (13), 78 (19), 77 (31), 76 (13), 65 (15), 63 (12)
5e	1	68	181–182 (Et ₂ O)	C ₁₂ H ₁₁ NO ₂ (201.2)	3059	1.05 (m, 4H, CH ₂ -cyclopropyl), 2.11 (m, 1H, CH-cyclopropyl), 6.83-7.14 (m, 3H _{arom}), 7.41 (s, 1H, H-4), 7.59 (m, 1H _{arom}), 9.94 (s, 1H, OH)	(12) (14), 134 (38), 133 (14), 131 (37), 121 (18), 105 (100), 104 (18), 78 (13), 77 (28), 76 (10), 65 (20), 63 (10)
5d	1	39	251–252 (Et ₂ O/ EtOAc)	C ₁₅ H ₁₁ NO ₂ (237.3)	3085	6.90-7.21, 7.48-7.54 (m, 6H _{arom}), 7.67 (s, 1 H, H-4), 7.80, 8.10 (m, 3 H _{arom}), 10.19 (s, 1 H, OH)	237 (M ⁺ , 58), 181 (37), 134 (49), 105 (100), 104 (14), 89 (27), 78 (13), 77 (54), 76 (23), 65 (21), 63 (27)

^a Yield of isolated pure product. Low yield 5a presumably due to the instability of 2a.

good agreement with those reported for the similar system. ¹³ In the NMR spectrum of **5b** the signal at $\delta = 10.33$ (OH) disappeared by addition of deuterium oxide. All compounds show a molecular ion and peaks due to the loss of RCN from the molecular ion, then further the expulsion of carbon monoxide. The most intense peaks in the spectra of **5** occur at m/z = 105 and corresponds to the benzoyl radical ion.

We have thus worked out a useful and simple method for the synthesis of 5-hydroxy-1,3-benzoxazepines 5, which are not easily obtainable by other routes.

Dry N₂ gas was routinely employed as the reaction atmosphere in all reactions. Benzene and THF were dried and distilled from Na and LiAlH₄, respectively. Silica gel EM 7747 for column chromatography was used throughout for product separation. Melting points were taken using an Electrothermal melting point apparatus and are uncorrected. Microanalyses were obtained using a Perkin-Elmer 240 DS element analyzer. Mass spectra were obtained using a Hewlett Packard model 5985 B spectrometer. IR spectra were recorded on a Analect FX 6160 IR spectrophotometer. ¹H-NMR spectra were measured on either a Bruker AM-200 (5a-d) or a Varian EM-360 A spectrometer (2a-d).

 α -Hydroxyphenacyl azide (1)¹⁵ and acetic formic anhydride¹⁷ were prepared following literature procedures.

o-Formyloxyphenacyl Azide (2a):

To a stirred solution of o-hydroxyphenacyl azide (1; 1.77 g, 10 mmol) in excess acetic formic anhydride (30 mL) is added dropwise pyridine (0.97 g, 12.3 mmol) at 0-5°C. After stirring for 2h at r.t. the mixture is poured into cold water (200 mL), and extracted with CH₂Cl₂ (3 × 50 mL). The extract is dried (MgSO₄), and the solvent is evaporated under reduced pressure to give 2a as

a light yellow oil, which is subjected to the next reaction without further purification; ¹⁸ yield: 1.86 g (91%).

o-Acyloxyphenacyl Azides 2b-d; General Procedure:

To a stirred solution of o-hydroxyphenacyl azide (1; 1.77 g, 10 mmol) in THF (20 mL) is added dropwise $\rm Et_3N$ (1.11 g, 11 mmol) and the acid chloride (10.5 mmol) at 0-5 °C. After stirring for the time indicated in Table 1 at r.t., the precipitated solid ($\rm Et_3N$ · HCl) is filtered, and the filtrate is concentrated under reduced pressure. The residual oil is purified by short-column chromatography on silica gel (hexane/EtOAc, 10:1) to give 2b-d.

5-Hydroxy-1,3-benzoxazepines 5; General Procedure:

To a stirred solution of the appropriate o-acyloxyphenacyl azide 2 (10 mmol) in benzene (30 mL) is added slowly P(OEt)₃ (1.66 g, 10 mmol) at 5-10 °C. The mixture is stirred for 0.5 h at r.t., and then refluxed for the time indicated in Table 2. The mixture is concentrated under reduced pressure, and the residual material is chromatographed on a silica gel column (hexane/EtOAc, 1:1) to give 5 as colorless crystals. An analytical sample is prepared by recrystallization from the appropriate solvent (Table 2).

In the case of the reaction of 2d with $P(OEt)_3$, the rearrangement product, N-(2-hydroxyphenacyl)benzamide (6) is also isolated; yield: 15%; mp 148–149°C (EtOAc/Et₂O).

6:

MS (70 eV): m/z = 255 (M⁺), 121, 105, 93, 77, 65, 51.

The authors are indebted to the Ministry of Science and Technology for financial support, project number NO6545.

^b Satisfactory microanalyses obtained: $C \pm 0.32$, $H \pm 0.27$, $N \pm 0.31$.

June 1990 Papers 457

- (1) Gololobov, Yu.G.; Zhmurova, I.N.; Kasukhin, L.F. Tetrahedron 1981, 37, 437.
- (2) Staudinger, H.; Meyer, J. Helv. Chim. Acta 1919, 2, 635.
- (3) Wong, S.C.K.; Johnson, A.W. J. Org. Chem. 1972, 37, 1850.
- (4) Pailer, M.; Haslinger, E. Monatsh. Chem. 1970, 101, 508. Lambert, P.H.; Vaultier, M.; Carrie, R. J. Chem. Soc., Chem. Commun. 1982, 1224.
- (5) Foster, S.A.; Leyshon, L.J.; Saunders, D.G. J. Chem. Soc., Chem. Commun. 1973, 29.
- (6) Aubert, T.; Farnier, M.; Hanquet, B.; Guilard, R. Synth. Commun. 1987, 17, 1831.
- (7) Leyshon, L.J.; Saunders, D.G. J. Chem. Soc., Chem. Commun. 1971, 1608.
- (8) Zbiral, E.; Stroh, J. Liebigs Ann. Chem. 1969, 727, 231.
- (9) Bruche, L.; Garanti, L.; Zecchi, G. Synthesis 1985, 304.

- (10) Lee, K.-J.; Kim, S.; Um, H.; Park, H. Synthesis 1989, 638.
- (11) Buchardt, O.; Lohse, C.; Duffield, A.M.; Djerassi, C. Tetrahedron Lett. 1967, 2741.
- (12) Albini, A.; Fasani, E.; Dacrema, L.M. J. Chem. Soc., Perkin Trans. 1 1980, 2738.
- (13) Desbene, P.-L.; Cherton, J.-C. Tetrahedron 1984, 40, 3567.
- (14) Le Roux, J. P.; Cherton, J.-C.; Desbene, P.-L. C.R. Acad. Sci. Ser. C 1974, 278, 1389; C.A. 1974, 81 105473.
- (15) Boyer, J.H.; Straw, D. J. Am. Chem. Soc. 1953, 75, 2683; Buu-Hoi, Ng. Ph.; Lavit, D. J. Chem. Soc. 1955, 18.
- (16) Cadogan, J.I.G.; Stewart, N.J.; Tweddle, N.J. J. Chem. Soc., Chem. Commun. 1978, 182.
- (17) Krimen, L.I. Org. Synth. 1970, 50, 1.
- (18) Purification by column chromatography on silica gel was unsuccessful due to decomposition.