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ENHANCEMENT OF THE CONJUGATIVE ELECTRON-RELEASING POWER OF THE HYDROKY-GROUP SHOWN BY THE 

KINETICS OF SOLVOLYSIS OF 2-BROMO-4-DIBP.OMOMBTHYLPHENOL AND OF 2-BROMO-4-DIBROMOMETHYL- 

ANISOLE 

Peter B.D. de la Mare* and Paul A. Newman 
Department of Chemistry, University of Auckland, Private Bag, Auckland, New Zealand. 

ABSTRACT: The relative rates and kinetic forms for the solvolyses of 2-bromo-4-dibromomethyl- 
phenol and its methyl ether lead to a new estimate ((J + = -1.6) of the electron-releasing power 
of the hydroxy-group. 

The conjugative electron-releasing properties of the hydroxy-group are well known, but 

rather few quantitative comparisons with other substituents are available. Phenol is brominated 

more rapidly than anisole, 
1 

and analysis of the relative rates of bromination of phenol, anisole, 

and their alkyl derivatives established that steric inhibition of resonance of the methoxy-group 

is responsible for only a part of this difference. 
2 

Eaborn3 showed that the hydroxy-group is 

also more electron-releasing than the methoxy-group in activating the aromatic nucleus for 

protodesilylation; and Deno and Evans4 drew similar conclusions from study of equilibria of the 

+ 
+ Ar3C+ + H20. As the result of these and other measurements, 

5 
type Ar3C.0H + H the 

values for the substituent parameters are often quoted as U+ = -0.92 (OH) and o+ = -0.78 (OMe). 

Resonance constants dissected from inductive constants by measurements based on fluorine nuclear 

magnetic resonance, 
6 

on infra-red spectra7 and on other processes 
8 

show even smaller (sometimes 

negative) estimates of the enhancement of the conjugative power of the hydroxy- as compared with 

the methoxy-substituent). 

Up till now, as far as we are aware, no quantitative estimation has been made of the effect 

of a hydroxy-group on the rate of a unimolecular (SN1) solvolysis. The observation' that 2- 

bromo-4-dibromomethylphenol is very unstable in moist air led us to investigate its rate of 

solvolysis, which required dioxan containing only 5% of water for convenient measurement at 34'C. 

The reaction requires discussion in terms of the Scheme; first-order rate-coefficients for the 

disappearance of 1, for the appearance of 3, and for the appearance of 4 can be estimated by 

conventional analysis of the successive ultraviolet absorption spectra of reacting mixtures. 

The intermediacy of the carbocation 2 follows from the observation of mass-law retardation 
10 

of - 

the disappearance of 1 as bromide ion develops in the reaction medium, or when bromide ion is - 

added initially. Both the initial rate and the very high mass-law constant were found to be 
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REME: &action paths in the solvolysis of 2-bromo-4-dibromomethylphenol (1, R = H) and of 2,6- 

dibrorro-4-dibromomethylphenol (1, R = Br) 

CHBr_ 

R r 

CHBr 

I +H20, -HBr 

OH 

CHO 

4 

early independent of acidity over the range 0.001-0.01 g, so the proton of the hydroxy-group is 

'esent not only in the transition-state for loss of bromide ion but also in the intermediate 

-HBr 
'om which the quinone methide 1 is formed. The hypothetical sequence 1 - 

-zz 

fH2O 
w 4, with 

lncerted dehydrobromination of 1, is not consistent with the combined dependence of rate on con- 

ntration of bromide ion and on acidity. 

The rate of the first stage of the forward reaction for 1 (R = H), viz. lcl = 0.459 min -' at - 

'C, has been compared with that of the corresponding stage of reaction (11, namely 

= 1.39 x 10e4 min-' at 34OC in the same solvent. 

tr +- [$Br]$_ $(r 

2 
5 6 7 - - 

c+ for the OMe group is taken as -0.78, and the p-value for this reaction is about -4.5, as 

. ..(l) 

ems likely from available analogies, 
11 

then c+ for the hydroxy-group as determined by using 

e present reaction is about -1.6, much larger than has been found by using aromatic substitut- 

n as a basis for comparison, despite the larger o-values for the latter reactions. 

Solvent effects on the reactivities of alkyl-substituted substrates reveal a complex balance 

tween hyperconjugative and inductive influences, 
IL 

with both ground-state and transition-state 

srgies probably affected differentially. Intuitively, it seems likely that, as long as 

Eluences on the transition state dominate, H-O hyperconjugation would be enhanced by a dipolar 
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solvent capable of hydrogen-bonding. The present case appears to provide a spectacular example, 

in which &_ (R = H), expected from known analogies to be only some 5 times more reactive than 5_, 

is in fact 3300 times more reactive. Despite the general rapidity of proton-transfers to and 

from oxygen, this particular very large rate-enhancement promoted by the hydroxy-group does not 

result in concerted proton-loss to the medium (which of course follows rapidly), just as proton- 

loss is not a necessary consequence of H-C hyperconjugation. 
13 

~&is and Lindberg 
14 

noted an 

analogous rate-enhancement by the hydroxy-group in the sulphitodehydroxylation of 4-hydroxy-3- 

methoxybenzyl alcohol [equation (211. In their treatment, the corresponding reaction of 3,4- 

dimethoxybenzyl alcohol, 

considered to proceed by 

to bear on this matter. 

OH 

which was 1000 times slower than that of its 4-hydroxy-analogue, was 

a different mechanism, but they seem to have had no compelling evidence 

r r,YoMe c7 
OMe OMe 

w - Y 
-H20 I I +H2s03 > q 'G . . . (2) 

CH20H CH2 
CH28C3H 

The deuterium isotope effectson the initial rates of solvolysis have been found to be 

kH/kD = 1.7 (R = H) and 1.9 (R = Brl. These isotope-effects are composite, including the solvent 

isotope-effect on ionization and the secondary isotope-effect on H-O hyperconjugation. They are 

similar in magnitude to that found in the bromination of phenol, 
15 

a result which suggests that 

the hydroxy-proton is still present in the rate-determining transition state inthis reactionalso. 

The quinone methide 2 (R = H) has been observed only as a transient intermediate: but its 

analogue 3 (R = Br) is more stable, and can be isolated. 
16 

- Its conversion back to 1 (R = Br) in 

the presence of added bromide ion has been established. Its hydration in the initial absence of 

bromide ion is subject only to a small inverse solvent deuterium isotope effect (k H2C,kD20 = ca. - 

0.8). A larger inverse effect might be expected if its conversion to 4 proceeded entirely - 

through 3_, with pre-equilibrium protonation on oxygen, so we think it likely that both the 

routes from 3 to 4 shown in the scheme are available. A normal solvent deuterium isotope effect, -- 

implicating a route other than that involving a proton pre-equilibrium, has been found for the 

acid-catalysed hydration of other quinone methides. 
17 

The identities of 1 (R = H, Br), 1 (R = Br), 4 (R = H, Br), 2 and 1 were established or - - 

confirmed by 
1 
H n.m.r. spectroscopy. Rates were determined spectrophotometrically by using a 

Varian DMS-90 spectrophotometer, with jacketed cells held at 34°C. The solvent was normally 
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dioxan containing 5% of water by volume. For determining the dependence of rate on acidity 

(HC104) and on concentration of Br- (LiBr), the ionic strength was held constant by the 

addition of the appropriate amounts of LiC104. 
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