

0040-4039(95)02099-3

(E)-(Hydroxyimino)(hydroxymethoxyphosphinyl)acetic Acid: Synthesis and pH-Dependent Fragmentation

Boris A. Kashemirov, Mari Fujimoto, and Charles E. McKenna*

Department of Chemistry, University of Southern California, University Park, Los Angeles, CA 90089-0744, USA

Abstract: In contrast to both its parent "troika" acid (*E*-1, a phosphorylating agent at pH 7 and 25 °C) and its C-methyl isomer (*E*-2, which is stable at both acidic and neutral pH), (*E*)-(hydroxyimino)(hydroxymethoxyphosphinyl)acetic acid *E*-3 was unreactive at pH 7 and 25 °C but at pH 1.5 fragmented to methyl phosphate 10 (15%) and methyl phosphorocyanidate 11 (85%). The minor product is consistent with solvent phosphorylation, the reaction exclusively observed with *E*-1. The non-phosphorylating fragmentation pathway is proposed to involve a preliminary $E \rightarrow Z$ isomerization of 3 prior to C_{α} -C β cleavage. Dual fragmentation pathways were also detected (³¹P NMR) when the DCHA⁺ salt of *E*-3 (*E*-9) was heated in acetonitrile or EtOH; in addition to phosphorylation products (16-19%), 11 was formed (81-84%). Reaction of *E*-9 in refluxing EtOH:-BuOH (1:1) showed low stereoselectivity in product formation (-3:1 ethyl methyl phosphate:*t*-butyl methyl phosphate), supporting a dissociative phosphorylation process.

E/Z-lsomeric α -(hydroxyimino)phosphonoacetic acids, or "troika acids" (1) have a central carbon connecting phosphonic, carboxylic and oxime acid groups, and thus represent a trifunctional molecular system potentially rich in interesting chemical behavior modulated by the stereochemical status of the hydroxyimino molety. Recently, the C-methyl ester of E-1 (E-2, as a monoanionic salt) was shown to give phosphorylation products when heated in acetonitrile (AN) or alcohols.¹ Under neutral or moderately acidic conditions at room temperature, E-2 (ionized in response to the pH) was stable in water at room temperature. Particularly intriguing was the observation that removal of the carboxy alkyl group of E-2 (e.g., by alkaline hydrolysis) created a phosphorylating agent (E-1) active under mild aqueous conditions (pH 7, 25 °C). Fragmentation of 1 was stereospecific, the E isomer giving P-C α bond cleavage, and the Z isomer undergoing C α -C β bond cleavage to form phosphorocyanidate. To explore further the effect of structure on the chemical properties of troika acid derivatives, we have now synthesized the P-monomethyl isomer of E-2, E-3, and examined its fragmentation behavior in aqueous and non-aqueous solvents.

Synthesis of E-3 (Scheme 1). Trimethyl α -(hydroxyimino)phosphonoacetate 6 was obtained (48%) as a 7 : 3 E : Z mixture² by nitrosation of the corresponding chlorocarbonyl compound 5⁵ followed by methanolysis. Monodealkylation of 6 with NaI gave 7 (88 : 12 E : Z mixture), which was hydrolyzed by NaOH to the P-monoester disodium salt 8. The acid 3 was generated using an ion-exchange resin in H⁺ form

and trapped as an E/Z mixture of dicyclohexylammonium (DCHA⁺) salts, from which the pure bis-DCHA⁺ salt of E-3 (E-9) was obtained by recrystallization.

Fragmentation of E-3. Like its C-methyl isomer *E-2*,¹ *E-3* (from the salt *E-9*) was stable in water at pH ~ 7 for 24 h (room temperature). However, in contrast to *E-2*, at pH 1.5 *E-3* (³¹P NMR δ 2.4 ppm) quantitatively decomposed (Scheme 2) over 2.5 h. The minor product, methyl phosphate 10 (15%; ³¹P NMR δ 2.1 ppm) was that expected from P-C_{α} bond cleavage by analogy with the behavior of *E-1*. The major product was methyl phosphorocyanidate 11 (85 %; ³¹P NMR δ -17.4 ppm),⁷ corresponding to C_{α}-C_{β} cleavage. In the system 1, this pathway was only observed with the *Z*-isomer,¹ suggesting that *E-3* undergoes acid-dependent isomerization to *Z*-3, which then decarboxylates to 11. The predominantly *trans* elimination of α -hydroxyliminocarboxylic acids⁹ is consistent with this idea. It is also supported by the observation of a small ³¹P NMR peak at δ –0.2 ppm, assigned to *Z*-3, in reaction mixtures containing incompletely decomposed *E-3*. The product distribution observed in the system 3 indicates that the overall process: *E-3* \rightarrow *Z-3* \rightarrow 11 is about 6x faster than a dissociative fragmentation of *E-3*, whether to a putative methyl metaphosphate intermediate which should react rapidly with the solvent (Scheme 2), or via an analogous open transition state.¹⁰

Scheme 2

E-2 (as a DCHA⁺ salt) decomposed to polyphosphates after 1 da in refluxing AN,¹ whereas methyl α -(hydroxyimino)benzylphosphonate anion (12) is thermally stable under similar conditions.¹¹ *E*-3 (as the DCHA⁺ salt *E*-9) resembles 12 in having a monoanionic phosphonate group that might be expected to be less reactive to fragmentation via a dissociative pathway than a potentially dianionic phosphonate such as *E*-1. *E*-9 in refluxing AN proved not to be stable, however, and the main P-C α cleavage phosphorylation product (*sym*-dimethyl pyrophosphate, ³¹P NMR; 16%) was dominated by an unexpected C α -C β cleavage product, methyl phosphorocyanidate (84%). Similar product partitioning was seen in refluxing EtOH (19% ethyl methyl phosphate, 81% methyl phosphorocyanidate). Replacement of the EtOH by 1 : 1 EtOH-*t*-BuOH resulted in a 1 :

3.3 ratio of ethyl : *t*-butyl methyl phosphate products (total 24%). Formation of polyphosphates in AN and phosphorylation at comparable rates of *t*-BuOH *vs*. primary alcohols are considered to be characteristic of dissociative phosphate and phosphonate fragmentations.¹⁰⁻¹³

In conclusion, we note that the possibility of *trans* elimination in both E and Z oxime isomers of troika acids is an important feature of these compounds. In the system 3, both pathways can be accessed from one stereoisomer (E-3) because $E \rightarrow Z$ isomerization competes favorably with direct fragmentation. The stability of E-2 at low pH and fragmentation-isomerization of E-3 under the same conditions indicates that these processes are facilitated in E-3 by intramolecular protonation of the oxime OH by the carboxyl proton. The stability of E-3, and the fragmentation of E-1 at pH 7 are consistent with a stereoelectronic control¹⁴ effect (E-1 vs. E-3 has the higher number of antiperiplanar lone pairs). It is not surprising that dissociative fragmentation of a methyl phosphonate monoanion such as E-3 at pH 7 would be more difficult than fragmentation of the dianion which should be available as an equilibrium species from 1 at this pH.

The stability of E-2 and E-3 under physiological aqueous conditions suggests that both types (P and C) of monoester could be precursors of E-1 via mild esterolytic hydrolysis, with an appropriate choice of the ester group.

EXPERIMENTAL DETAILS

All reagents were AR grade from Aldrich, Inc. NMR (Bruker AM 360) spectra were referenced to tetramethylsilane (¹H, ¹³C) or external 85% H₃PO₄ (³¹P). Melting points were recorded on a Thomas Hoover apparatus. Elemental analysis were performed by Galbraith Laboratories, Inc.

Trimethyl α -(*Hydroxyimino*)*phosphonoacetate* 6. Oxime 6 was prepared as previously described,¹⁵ but the reaction conditions were 5 h at rt and 4, obtained here by acidification of the corresponding potassium salt¹⁶ using Dowex 50WX8 (H⁺ form), was used as the starting material. The product was purified by column chromatography on silica gel (30-60 mesh) (CHCl₃/acetone, 5 : 1), yield 48%. ¹H NMR (CDCl₃): δ (ppm) 3.7-3.9 (m, 9H, OCH₃), 12.4 (s, 1H, OH). ¹³C NMR (CDCl₃): δ (ppm) 143.5 (*E*), (d, ¹*J*_{CP} = 224 Hz, P-C=N), 143.1 (*Z*), (d, ¹*J*_{CP} = 164 Hz, P-C=N). ³¹P NMR (CDCl₃): δ (ppm) 7.7 (*E*), 6.2 (*Z*). Calcd for C₅H₁₀NO₆P: C, 28.45; H, 4.77; N, 6.63. Found: C, 28.09; H, 4.79; N, 6.48.

Sodium Salt (7) of Methyl (Hydroxyimino)(hydroxymethoxyphosphinyl)acetate. A solution of 6 (420 mg, 1.99 mmole) in dry acetone (5 mL) was added to a solution of Nal (328 mg, 2.19 mmole) in dry acetone (5 mL) at room temperature. After 24 h, the precipitate was filtered and washed with dry acetone and Et₂O, yielding 320 mg (73.4%) 7 as a white solid, dec. 143 °C. ¹H NMR (D₂O): δ (ppm) 3.42 (*E*), (d, ³J_{HP} = 11.5 Hz, OCH₃), 3.39 (*Z*), (d, ³J_{HP} = 11.5 Hz, OCH₃), 3.71 (*E*), (s, OCH₃), 3.68 (*Z*), (s, OCH₃). ¹³C NMR (D₂O): δ (ppm) 52.4 (d, ²J_{CP} = 5.4 Hz, OCH₃), 52.7 (s, OCH₃), 150.0 (d, ¹J_{CP} = 193 Hz, P-C=N), 164.4 (d, ²J_{CP} = 20 Hz, C=O). ³¹P NMR (D₂O): δ (ppm) 2.14 (*E*), - 0.75 (*Z*).

Bis-DCHA⁺ Salt (E-9) of (E)-(Hydroxyimino)(hydroxymethoxyphosphinyl)acetic Acid E-3. A solution of NaOH (100 mg, 2.5 mmole) in H₂O (25 mL) was added to a solution of 7 (273 mg, 1.25 mmole) in H₂O (2 mL) at 5 °C. After 24 h without cooling, the solvent was removed in vacuo. The residue was dissolved in 0.5 mL H₂O and 1 mL MeOH and the acid E-3 was generated by filtration through Dowex 50WX8 (H⁺ form). The filtrate was immediately treated with DCHA (3 eq.) in MeOH (5 mL). The mixture was evaporated in

vacuo and the residue recrystallized from *n*-propanol/acetone, giving 350 mg (51.3%) of *E*-**9** as white crystals: mp 141-142 °C. ¹H NMR (D₂O): δ (ppm) 1.0–2.1 (m, 40 H, CH₂), 3.19 (m, 4 H, CH), 3.54 (d, 3 H, OCH₃, ³J_{HP} = 11 Hz). ¹³C NMR (D₂O): δ (ppm) 23.8, 24.4, 28.9, 53.0 (cyclohexyl), 52.4 (d, OCH₃, ²J_{CP} = 5.4 Hz), 156.4 (d, ¹J_{CP} = 185 Hz, P-C=N), 168.8 (d, ²J_{CP} = 18 Hz, C=O). ³¹P NMR (D₂O): δ (ppm) 4.2. Calcd for C₂₇H₅₂N₃O₆P: C, 59.43; H, 9.60; N, 7.70. Found: C, 59.17; H, 9.74; N, 7.65. Generation of the acid form, as described above but in MeOH provided it (major product) as a 1 : 1 mixture of *E* : *Z* isomers. ³¹P NMR (D₂O): δ (ppm) 2.4 (*E*), -0.2 (*Z*). ¹³C NMR (CDCl₃, C₂D₆O): δ (ppm) 146.8 (d, ¹J_{CP} = 212 Hz, P-C=N) (*E*), 144.4 (d, ¹J_{CP} = 157 Hz, P-C=N) (*Z*).

pH Dependence of the Stability of E-3. These experiments were carried out in 5 mm glass NMR tubes at 25 °C, concentration of *E-3* [prepared from *E-9* by treatment with Dowex 50X8 (H⁺ form)] 0.1% in D₂O (w/v).

Stability of E-3 When Heated in Different Solvents. A solution of 40 mg E-9 in 5 ml of solvent (AN, EtOH or EtOH-t-BuOH) was heated to reflux and reaction was monitored by 31 P NMR.

ACKNOWLEDGMENT

We thank the National Institutes of Health (Grant AI-25697) for financial support.

REFERENCES AND NOTES

- (1) Kashemirov, B. A.; Ju, J.-Y.; Bau, R.; McKenna, C. E. J. Am. Chem. Soc. 1995, 117, 7285-7286.
- (2) Structural assignments of the oxime isomers in this work were done on the basis of correlations between structure, ³¹P NMR δ values³ and ¹³C NMR ¹J_{CP} values.⁴
- (3) Breuer, E.; Karaman, R.; Goldblum, A.; Gibson, D.; Leader, H.; Potter, B. V. L.; H., C. J. J. Chem. Soc. Perkin Trans. 1 1988, 3047-3057.
- (4) McKenna, C. E.; Kashemirov, B. A.; Ju, J.-Y. J. Chem. Soc. Chem. Comm. 1994, 1211-1212.
- (5) We prepared the intermediate 5⁶ by reaction of (dimethoxyphosphinyl)acetic acid 4 with SOCl₂ in refluxing CH₂Cl₂, ³¹P NMR (CDCl₃): δ (ppm) 17.8.
- (6) Zhang, Y.; Takeda, S.; Kitagawa, T.; Irie, H. Heterocycles 1986, 24, 2151-2152.
- (7) Spectroscopic data were identical to that of the authentic compound prepared by NaI monodealkylation of dimethyl phosphorocyanidate⁸ (unpublished work from our laboratory).
- (8) Shioiri, T.; Yokoyama, Y.; Kasai, Y.; Yamada, S. Tetrahedron 1976, 32, 2211-2217.
- (9) Ahmad, A.; Spenser, I. D. Can. J. Chem. 1961, 39, 1340-1359.
- (10) a) Westheimer, F. H. Chemical Reviews **1981**, 81, 313-326. b) Katzhhendler, J.; Karaman, R.; Gibson, D.; Breuer, E.; Leader, H. J. Chem. Soc. Perkin Trans. II **1989**, 589-594.
- (11) Mahajna, M.; Breuer, E. J. Org. Chem. 1993, 58, 7822-7826.
- (12) Ramirez, F.; Marecek, J. F.; Yemul, S. S. J. Am. Chem. Soc. 1982, 104, 1345-1349.
- (13) Quin, L. D.; Bourdieu, C.; Quin, G. S. Tetrahedron Lett. 1990, 31, 6473-6476.
- (14) Gorenstein, D. G. Chem. Rev. 1987, 87, 1047-1077.
- (15) Kashemirov, B. A.; Mikityuk, A. D.; Strepikheev, U. A.; Khokhlov, P. S. J. Gen. Chem. USSR (Engl.) 1986, 56, 843.
- (16) Malevannaya, R. A.; Tsvetkov, E. N.; Kabachnik, M. I. J. Gen. Chem. USSR (Engl.) 1971, 41, 1432-1439.

(Received in USA 25 August 1995; revised 26 October 1995; accepted 28 October 1995)