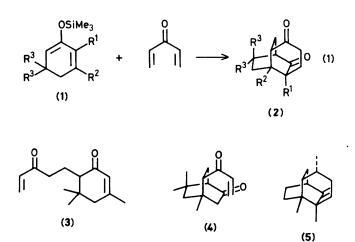
## One-step Synthesis of Tricyclo[5.3.1.0<sup>3,8</sup>]undecan-4,11-diones by Three Consecutive Michael Reactions. A Formal Synthesis of $(\pm)$ -Seychellene

## Hisahiro Hagiwara,\* Akihiro Okano, and Hisashi Uda

Chemical Research Institute of Non-aqueous Solutions, Tohoku University, Sendai 980, Japan

Divinylketone and the trimethylsilyl enol ethers of cyclohex-2-en-1-ones undergo Lewis acid assisted triple Michael reactions yielding tricyclo[ $5.3.1.0^{3,8}$ ]undecan-4,11-diones; the application of this reaction enabled a formal synthesis of (±)-seychellene (**5**).


The efficient construction of polycyclic systems is of great importance in synthetic organic chemistry.<sup>1</sup> Previously we reported a one-step synthesis of tricyclo[ $3.2.1.0^{2,7}$ ]octan-6ones, and its application to the total synthesis of ( $\pm$ )ishwarane, employing successive Michael–Michael–alkylation reactions.<sup>2</sup> Our continuing interest in the development of a new methodology of forming multiple C–C bonds leads us to our present report: Lewis acid assisted three-fold Michael reactions of divinylketone with trimethylsilyl enol ethers of cyclohex-2-en-1-ones give tricyclo[ $5.3.1.0^{3,8}$ ]undecan-4,11diones (equation 1), which form the key framework of several polycyclic natural products such as seychellene (5) or patchouli alcohol.

In a typical procedure, to a stirred solution of Lewis acid in  $CH_2Cl_2$  was added at -80 °C a solution of divinylketone and trimethylsilyl enol ether in  $CH_2Cl_2$  successively. The reaction temperature was gradually raised and stirring was continued at

**Table 1.** Lewis acid assisted three-fold Michael reaction of the divinylketone with the trimethylsilyl enol ethers of various cyclohex-2-en-1-ones.

|       |                                                                 | Yield (%)                                              |                                   |
|-------|-----------------------------------------------------------------|--------------------------------------------------------|-----------------------------------|
| Entry | Product                                                         | TiCl <sub>4</sub> /Ti(OPr <sup>i</sup> )4 <sup>a</sup> | Et <sub>2</sub> AlCl <sup>a</sup> |
| 1     | $(2a) (R^1 = H, R^2 = R^3 = Me)$                                | 30                                                     | 34                                |
| 2     | $(2b)(R^1 = R^2 = Me, R^3 = H)$                                 | 20                                                     | 43ь                               |
| 3     | (2c) (R <sup>1</sup> = Me, R <sup>2</sup> = R <sup>3</sup> = H) | 5                                                      | 13                                |
| 4     | (2d) (R <sup>1</sup> = R <sup>2</sup> = H, R <sup>3</sup> = Me) | 3                                                      | 13                                |
| 5     | $(2e) (R^1 = Me, R^2 = H, R^3 =$                                |                                                        |                                   |
|       | $-C(Me)=CH_2$ and H)                                            | 4                                                      | 8                                 |
| 6     | $(2f)(R^1 = R^2 = R^3 = H)$                                     | trace                                                  | trace                             |

 $^{\rm a}$  Two equivalents of Lewis acid were used.  $^{\rm b}$  Three equivalents of  $Et_2AlCl$  were used.



room temperature overnight. After extractive work-up, the product was isolated by preparative h.p.l.c.<sup>†</sup>

Among the Lewis acids investigated, satisfactory results were obtained using a mixture of  $TiCl_4$  and  $Ti(OPri)_4$  (ratio 0.8:1), or  $Et_2AlCl$  which gave somewhat higher yields.<sup>‡</sup> The results are listed in Table 1.

When the reaction was quenched at -80 °C after 1 h in entry 1 using titanium, the single Michael product (3) and the two-fold Michael product (4)§ were isolated in 9 and 39% yields, respectively. The progress of the reaction could be followed (t.l.c.) by the disappearance of the spots due to these compounds and appearance of the spot due to the three-fold Michael product (2a). From these results, the reaction proceeded via the sequential three-fold Michael pathway, not a successive Diels-Alder then Michael reaction pathway.

Since the tricyclic diketone (2b) has previously been transformed into  $(\pm)$ -seychellene (5) by Jung and co-workers,<sup>3</sup> the present work constitutes a formal synthesis of this naturally occurring tricyclic sesquiterpene (5).<sup>4</sup> The spectral data (n.m.r., i.r., and mass) of (2b) matched completely those of an authentic specimen. Since the average yield for each of the three C-C bond forming steps is 75%, the yield is quite satisfactory. Bicycloannulation by the three-fold Michael reaction described above is synthetically useful, since construction of a tricylic ring system can be achieved in a single step from readily available precursors, although yields are modest.

We thank Professor M. E. Jung for providing the spectral data of authentic (2b).

Received, 8th May 1985; Com. 622

## References

- 1 R. M. Cory and R. M. Renneboog, J. Org. Chem., 1984, 49, 3898, and references cited therein.
- 2 H. Hagiwara, H. Uda, and T. Kodama, J. Chem. Soc., Perkin Trans. 1, 1980, 963.
- 3 M. E. Jung, C. A. McCombs, Y. Takeda, and Y.-G. Pan, J. Am. Chem. Soc., 1981, 103, 6677.
- 4 S. C. Welch, J. M. Gruber, C.-Y. Chou, M. R. Willcott, and R. Inners, J. Org. Chem., 1981, 46, 4816, and the references for the alternative eight syntheses cited therein.

<sup>†</sup> Satisfactory <sup>1</sup>H n.m.r., i.r., high resolution mass spectra and/or elemental analyses were obtained for all new compounds.

<sup>‡</sup> The reaction of divinylketone with the kinetic enolates generated by cleavage of the trimethylsilyl enol ether by MeLi gave only trace amounts of the desired products.

§ The stereochemistry was tentatively assigned as indicated.