\approx 3.2) is essentially the same as that in W₂Me₈⁴⁻, we can enter a point for the latter on Sattelberger and Fackler's plot of the $\delta \rightarrow \delta^*$ transition energy vs. M-M distance.²⁵ As shown in Figure 3, the new point lies very close to the straight line previously established using the Cr, Mo, and Re compounds.

Acknowledgment. We are grateful to several co-workers for useful discussions or help in the early stages, especially Dr. L. W. Shive, who participated in some of the earliest preparative experiments, and Dr. D. M. Collins, who played a vital role in solving the crystal structure. This work was supported in part by the National Science Foundation.

References and Notes

- (1) (a) Texas A&M University; (b) Imperial College
- (2) F. A. Cotton et al., Science, 145, 1305 (1964).
 (3) F. A. Cotton, Inorg. Chem., 4, 334 (1965).
- (4) Literature prior to mid 1974 is covered in F. A. Cotton, Chem. Soc. Rev., 4, 17 (1975).
- (5) F. A. Cotton, B. A. Frenz, and L. W. Shive, Inorg. Chem., 14, 649
- (6) F. A. Cotton and L. W. Shive, *Inorg. Chem.*, 14, 2027 (1975).
 (7) F. A. Cotton, B. A. Frenz, B. R. Stults, and T. R. Webb, *J. Am. Chem. Soc.*,
- 98, 2768 (1976).
 F. A. Cotton, L. D. Gage, K. Mertis, L. W. Shive, and G. Wilkinson, *J. Am. Chem. Soc.*, 98, 6922 (1976).
 F. A. Cotton and L. W. Shive, *Inorg. Chem.*, 14, 2032 (1975).
- (10) F. A. Cotton and B. J. Kalbacher, Inorg. Chem., in press.

- (11) F. A. Cotton and T. R. Webb, *Inorg. Chem.*, **15**, 68 (1976).
 (12) J. V. Brencic and P. Segedin, *Z. Anorg. Allg. Chem.*, **432**, 266 (1976).
 (13) J. Potenza, R. J. Johnson, and J. San Filippo, Jr., *Inorg. Chem.*, **15**, 2215 (1976).
- (14) D. M. Collins, F. A. Cotton, and C. A. Murillo, Inorg. Chem., 15, 1861 (1976)
- (15) D. M. Collins, F. A. Cotton, and C. A. Murillo, Inorg. Chem., 15, 2950 (1976).
- (16) F. A. Cotton, J. G. Norman, Jr., B. R. Stults, and T. R. Webb, J. Coord. Chem., 5, 217 (1976).
- (17) F. A. Cotton and M. Jeremic, Synth. Inorg. Met.-Org. Chem., 1, 265 (1971).
- (18) V. Katovic, J. L. Templeton, R. J. Hoxmeier, and R. E. McCarley, *J. Am. Chem. Soc.*, 97, 5300 (1975).
 (19) M. H. Chisholm, F. A. Cotton, B. A. Frenz, W. W. Reichert, L. W. Shive, and
- B. R. Stults, J. Am. Chem. Soc., 98, 4469 (1976).
- (20) F. Huq, W. Mowat, A. Shortland, A. C. Skapski, and G. Wilkinson, Chem. Commun., 1080 (1971).
- (21) M. H. Chisholm, F. A. Cotton, M. Extine, and B. R. Stults, Inorg. Chem., 15,
- 2252 (1976), and earlier references to W≡W compounds cited therein.
 (22) J. G. Norman, Jr., and H. J. Kolari, J. Am. Chem. Soc., 97, 33 (1975).
 (23) J. Krausse, G. Marx, and G. Schödl, J. Organomet. Chem., 21, 159
- (24) F. A. Cotton, J. M. Troup, T. R. Webb, D. H. Williamson, and G. Wilkinson, J. Am. Chem. Soc., 96, 3824 (1974).
 (25) A. P. Sattelberger and J. P. Fackler, Jr., J. Am. Chem. Soc., 99, 1258
- (1977)
- (26) D. M. Collins, F. A. Cotton, S. Koch, M. Millar, and C. A. Murillo, J. Am. Chem. Soc., 99, 1259 (1977).
- (27) M. A. S. King and R. E. McCarley, Inorg. Chem., 12, 1972 (1973).
- (28) E. Kurras, V. Rosenthal, M. Mennenga, G. Oehme, and G. Engelhardt, Z. Chem., 14, 160 (1974).
- (29) E. Kurras, V. Rosenthal, M. Menninga, G. Oehme, and G. Engelhardt, J. Organomet. Chem., 84, C13 (1975).

Methyl and Fluorine Substituent Effects on the Gas-Phase Lewis Acidities of Silanes by Ion Cyclotron Resonance Spectroscopy

M. K. Murphy and J. L. Beauchamp*1

Contribution No. 5406 from the Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125. Received January 7, 1977

Abstract: Formation of gas-phase Lewis acid-base adducts $(CH_3)_nF_{4-n}SiF^-$ (n = 0-2) in reactions of SF_6^- and SF_5^- with neutral fluoromethylsilanes are examined using trapped-anion ion cyclotron resonance spectroscopy. Fluoride transfer reactions observed in binary mixtures of the silanes and of silanes with borane Lewis acids R_3B ($R = CH_3$, C_2H_5 , $i-C_3H_7$, F), in the presence of trace amounts of SF₆ as the fluoride source, establish the Lewis acidity order BF₃ > SiF₄ > $(i-C_3H_7)_2$ FB > $(i-C_3H_7)_$ $(C_3H_7)_3B > (C_2H_5)_2FB > (C_2H_5)_3B > (CH_3)_2FB > CH_3SiF_3 > (CH_3)_3B > (CH_3)_2SiF_2 > SF_4 > (CH_3)_3SiF$ in the gas phase for F⁻ as reference base. Quantitative estimates of adduct bond dissociation energies $D[(CH_3)_nF_{4-n}Si-F^-]$ (n = 0.2) and heats of formation of adducts $(CH_3)_nF_{4-n}SiF^-$ are derived. Variations in adduct bond strengths are discussed in terms of the effects of methyl and fluorine substitution on silicon. Analogies are drawn to similar substituent effects observed in the isoelectronic neutral fluoromethylphosphoranes.

Electron-pair dative bond formation between acceptor species A, which possess low-lying vacant orbitals, and donors B, which have accessible lone pairs (phenomena most generally described by the Lewis theory of acid-base interactions²), encompass chemical behavior common to much of the periodic table. Among the more familiar Lewis acids are the group 3b acceptors (compounds of B, Al, Ga, etc.) and many metal cations (from groups 1a, 2a, and compounds of the transition metals).^{3,4} Studies of dissociation equilibria (eq 1) and displacement reactions (eq 2),

$$AB \rightleftharpoons A + B \quad \Delta H \equiv D[A-B] \tag{1}$$

$$A_1B + A_2 \rightleftharpoons A_1 + A_2B \tag{2}$$

employing a common reference base B, have provided information on adduct bond dissociation energies and insight into relationships between molecular structure and chemical reactivity for a wide variety of polyatomic Lewis acids, both in solution and in the gas phase.^{3,4}

By comparison, much less is known about Lewis acid properties of neutral group 4b acceptors R_4M (M = C, Sn, Ge, etc.), where formation of acid-base adducts requires coordinative expansion of nominally closed-shell (electron octet) systems. Under the influence of higher effective nuclear charge and with the availability of lower energy vacant d orbitals, the tendency for dative bonding is increased for the heavier members of the group (e.g., Ge, Sn, Pb).⁵ For carbon systems, Dougherty has reported several anionic halide adducts $\{CH_3XY^- \text{ (where X, Y = Cl, Br, I)}, \{CH_nCl_{4-n}CCl^- \text{ (}n = 1\}, \{CH_nXY^- \text{ (}n = 1\}, CH_nXY^- \text{ (}n = 1\}, \{CH_nXY^- \text{ (}n = 1\}, CH_nXY^- \text{ (}n = 1\}, CH_nX^- \text{ (}n =$ $(0-3)^7$ and $R_3CBr_2^-$ (where R = H, alkyl)⁸ in the gas phase using high-pressure mass spectrometry. Only in the case of CCl₅⁻, however, is the involvement of pentacoordinate carbon without controversy. Yamdagni and Kebarle⁹ have attributed the stability of the chloride adduct with chloroform to strong hydrogen bonding of the type $[Cl_3C - H - Cl]^-$. From studies of the temperature dependence of equilibria such as eq 1 where $B = Cl^-$, bond dissociation energies $D[Cl_4C - Cl^-] = 14.2 \pm 0.7 \text{ kcal/mol}^7$ and $D[Cl_3HC - Cl^-] = 15.2 \text{ kcal/mol}^9$ have been determined.

A number of theoretical calculations 10-18 have examined adducts involving pentacoordinate carbon and silicon, with the primary interest being in the investigation of potential energy surfaces for bimolecular nucleophilic substitution (S_N2) reactions. Relevant to the present study are comparisons of the relative energies of separated reactants and transition states of the S_N2 surfaces (i.e., the reaction complexes corresponding to pentacoordinate adducts). Various calculations 10-14 show that for carbon and silicon systems, the most stable adduct geometries are of D_{3h} symmetry (trigonal bipyramidal). Recently, large basis set ab initio calculations by Baybutt¹⁰ have compared the adducts $H \cdots CH_3 \cdots H^-$, $F \cdots CH_3 \cdots F^-$, $H \cdots$ SiH₃···H⁻, and F···SiH₃···F⁻. CH₅⁻ and CH₃F₂⁻ were found to be less stable than the separated reactants by 61.2 and 2.1 kcal/mol, respectively, while SiH₅⁻ and SiH₃F₂⁻ adducts were calculated to be more stable by 18.6 and 52.1 kcal/mol, respectively. 10 It was found that while d orbitals are not entirely responsible for the stability of the silicon adducts, their inclusion in the basis functions do increase the stabilities of SiH_5^- and $SiH_3F_2^-$ substantially (by $\sim 10 \text{ kcal/mol}$).¹⁰

A number of pentacoordinate silicon adducts have been experimentally observed. Pentacoordinate amine adducts (CH₃)₃NSiF₄, ¹⁹ (CH₃)₃NSiHF₃, ²⁰ and (CH₃)₃NSi(CH₃)- F_3^{21} have been observed in the gas phase. From measurements of dissociation equilibria of these complexes it is found that adduct stability decreases sharply with replacement of F by H on silicon and even more so with replacement of F by CH₃.²² SiF_5^- was first reported as a salt $\{[(C_2H_5)_3P]_2PtCl-$ (CO)\\frac{+}{SiF_5}^-, the unexpected product of heating C₂F₄ and [(C₂H₅)₃P]₂PtHCl in a silica vessel.²³ NMR studies of SiF₅⁻, $RSiF_4^-$, and $R'_2SiF_3^-$ species (R = alkyl, aryl; R' = aryl) indicate trigonal-bipyramidal structures below -60 °C in solvents of low polarity.²⁴ Recent gas-phase studies using ion cyclotron resonance spectroscopy (ICR) and high-pressure mass spectrometry (HPMS) have examined the formation of anions containing pentacoordinate silicon. MacNeil and Thynne²⁵ report the formation of SiF₅⁻ by a rapid fluoride transfer reaction ($k = 2.2 \times 10^{-10} \text{ cm}^3 \text{ mol}^{-1} \text{ s}^{-1}$) from SiF₃⁻, generated by electron impact, in SiF₄. Dillard²⁶ has recently measured cross sections for anion transfer reactions

$$SF_6^- + (CH_3)_n F_{4-n} Si \rightarrow (CH_3)_n F_{4-n} SiF^- + SF_5$$
 (3)

(where n = 1-3) for reactant ion energies as low as 0.5 eV using HPMS. Reaction cross sections were observed to decrease rapidly with successive substitution of CH₃ for F on silicon; the fluoride adduct of (CH₃)₃SiF was barely detectable. McDaniel²⁷ has reported an ICR study of fluoride transfer reactions (analogous to process 2) among a variety of inorganic Lewis acids. The observed relative Lewis acidity order SF₄ < HCl < SiF₄ < BF₃ served to establish the limits^{27,28} 54 \leq $D[F_4Si-F^-]$ < 71 kcal/mol in the gas phase.

Recent ICR studies from this laboratory²⁹ of fluoride transfer reactions (analogous to processes 2 and 3) in mixtures of trialkylboranes and BF₃ indicate that the fluoride affinities $D[A-F^-]$ of acids R₃B and R₂FB (R = CH₃, C₂H₅, i-C₃H₇) all lie intermediate between SF₄ and BF₃. In the present report, we wish to describe results of trapped-anion ICR investigations of gas-phase fluoride transfer reactions occurring in the fluoromethylsilanes (CH₃)_nF_{4-n}Si (n = 0-3), both alone and in binary mixtures, in the presence of SF₆ as the fluoride source. In addition, fluoride transfer reactions observed in mixtures

of these silanes with the alkylboranes and BF₃ afford quantitative estimates of silane Lewis acidities, for F⁻ as reference base

Experimental Section

All studies reported herein utilize a high-field ICR spectrometer (employing a 15-in. magnet system) constructed in the Caltech instrument shops. Details of the instrumentation and experimental techniques associated with ICR spectrometry are described elsewhere. 30 Gas mixtures utilized are prepared directly in the ICR cell by admission of appropriate sample components through separate variable leak valves in a parallel inlet manifold. Absolute gas pressures are determined using a Schulz-Phelps ionization gauge, adjacent to the ICR cell, calibrated separately for each component against an MKS Baratron capacitance manometer (Model 90H1-E).30c A linear calibration of Baratron pressure (absolute) vs. ionization gauge current affords pressure determinations over a range of 10^{-7} – 10^{-4} Torr. Overall accuracy in pressure measurement for these studies is estimated to be $\pm 20\%$, and represents the major source of error in reported reaction rate constants. All measurements are performed at ambient temperature (~22 °C). Bimolecular reaction rate constants are determined with knowledge of neutral gas pressures from the limiting slopes of semilog plots of trapped-ion abundance vs. time and by considering product distributions where applicable.

(CH₃)₃B and (C₂H₅)₃B were purchased from Alfa Inorganics and SF₆, SiF₄, BF₃, and SO₂ from Matheson. Samples of (CH₃)₃SiF, (CH₃)₂SiF₂, and CH₃SiF₃ were provided through the courtesy of Professor J. G. Dillard, and that of (*i*-C₃H₇)₃B from Professor A. H. Cowley. Noncondensable impurities are removed from all samples by multiple freeze-pump-thaw cycles at liquid nitrogen temperatures; mass spectral analyses showed no detectable impurities in the samples utilized.

In all studies reported here, SF_6 is utilized as the source of fluoride ion. SF_6^- (\sim 95%) and SF_5^- (\sim 5%) are generated from neutral SF_6 , typically present at \sim 10⁻⁸ Torr pressure, by rapid attachment of near thermal energy electrons produced in the ICR trapping well by inelastic collisions with neutrals present during the 10-ms electron beam pulse. ³¹⁻³³ In mixtures containing (CH₃)₃SiF, SO_2F^- (generated by fluoride transfer from SF_6^- to $SO_2^{27.28a}$) was also tried as a source of F^- . The electron beam energy utilized is nominally 70 eV for emission currents of \sim 10⁻⁷ A.

Data reported in tables and figures are normalized to monoisotopic abundances (12 C, 98.89%; 11 B, 80.22%; 28 Si, 92.21%; 32 S, 95.0%). Typically, ion concentrations comprising <1% of the total are not included in the reported data.

Results

Observed ion-molecule reactions between SF_6^- and each of the silanes $(CH_3)_nF_{4-n}Si\ (n=0-3)$ are described below. Fluoride ion transfer reactions dominate the anion chemistry of these systems and ultimately yield stable pentacoordinate silane-fluoride adducts $(CH_3)_nF_{4-n}SiF^-\ (n=0-2)$. Then reactions initiated by SF_6^- in binary mixtures of the silanes are examined to determine relative fluoride affinities (Lewis acidities) of the neutrals. Finally, in attempts to quantify the fluoride affinities of the silanes, studies of mixtures of the silanes with various borane Lewis acids R_3B (where $R=CH_3$, C_2H_5 , i- C_3H_7 , and F) are described. The gas-phase fluoride affinities of these boranes are available from recent studies and provide reference points for quantitative comparisons. Experimentally determined reaction rate constants are summarized in Table I.

 SF_6/SiF_4 . In a sample of SiF_4 at 9.7×10^{-7} Torr pressure containing trace amounts of SF_6 ($\sim 10^{-8}$ Torr), production of SiF_5^- via the reaction

$$SF_6^- + SiF_4 \rightarrow SiF_5^- + SF_5$$
 (4)

involving fluoride transfer from SF_6^- is in agreement with previous reports.^{27,34} SF_5^- produced by dissociative electron capture in SF_6 also generates SiF_5^- via the fluoride transfer reaction

$$SF_5^- + SiF_4 \rightarrow SiF_5^- + SF_4$$
 (5)

Table I. Ion-Molecule Processes Observed	pa			
System	Reaction	No.a	Rate constantb	Thermochemical implications
SF ₄ /SiF ₄	$SF_6^- + SiF_4 \rightarrow SiF_5^- + SF_5$	4	4.2	$D\{\operatorname{SiF}_4-\operatorname{F}^-\} > D\{\operatorname{SF}_5-\operatorname{F}^-\}$
÷	$SF_{\epsilon}^{-} + SiF_{\epsilon}^{-} + SF_{\epsilon}^{-} + SF_{\epsilon}^{-}$	5	8.9	$D[SiF_4-F^-] > D[SF_4-F^-]$
SF,/CH ₃ SiF ₃	$SF_s^- + CH_3SiF_3 \rightarrow CH_3SiF_4^- + SF_s$	9	1.5	$D[(CH_3)F_3Si-F^-] > D[SF_5-F^-]$
	$SF_c^- + CH_sSiF_s \rightarrow CH_sSiF_d^- + SF_d$	7	2.6	$D[(CH_3)F_3Si-F^-] > D[SF_4-F^-]$
SF ₆ /(CH ₃) ₂ SiF ₂		&	1.3d	$D[(CH_3)_2F_2Si-F^-] > D[SF_5-F]$
	$(CH_3)_2SiF_3 + SF_5$			
	SF. + (CH ₃) ₂ SiF ₂ (HF + (CH ₃)F,CH,			
	10% SF, -+ Or	6	0.1d	$\Delta H_{\rm f} ({\rm CH_3}){\rm F,SiCH, } < -157.1,$
	CH,F+ (CH,)F,Si			$\Delta \dot{H} = -3.5 \dot{J}$
	SF, ⁻ + (CH ₃), SiF, → (CH ₃), SiF, ⁻ + SF,	10	0.3	$D[(CH_3),F,Si] > D[SF_4-F]$
SF./(CH.),SiF	SE, -+ (CH,), SiF # (CH,), SiF, -+ SF,	2	< 0.01	$D[(CH_3)_3FSi-F^{-1} > D[SF_4-F^{-1}]$
5,5	SF, "+ (CH,), SF; # (CH,), SFF, "+ SF,	υ	<0.01	$D[(CH_3),FSi-F^{-1} < D[SF_4-F^{-1}]$
SF./(CH.), SiF/SO,	SO,F + (CH,),SiF # (CH,),SiF, + SO,	116	<0.01	$D[(CH_3),FSi-F^{-1} < D[SO_3-F^{-1}]$
7 5 75 5 76	SO,F, - + (CH,),SiF # (CH,),SiF, - + SO,F	12c	< 0.01	_
SF./(CH.),SiF/(CH.),SiF.	(CH_3) , SiF, $7 + (CH_3)$, SiF $\rightarrow (CH_3)$, SiF, $7 + (CH_3)$, SiF,	13c	<0.01	
SF,/(CH,),SiF,/CH,SiF,	$(CH_3)_2SiF_3^- + CH_3SiF_3 \rightarrow CH_3SiF_4^- + (CH_3)_2SiF_2$	14	2.2	$D[(CH_3)F_3Si-F^{-}] > D[(CH_3)_2F_2Si-F^{-}],$
				$\Delta G < -2.68$
SF ₆ /CH ₃ SiF ₃ /SiF ₄	$CH_3SiF_4^- + SiF_4 \rightarrow SiF_5^- + CH_3SiF_3$	15	$\sim 3e$	$D[F_4Si-F^-] > D[(CH_3)F_3Si-F^-]$
$SF_6/(CH_3)_3B/(CH_3)_2SiF_2$	$(CH_3)_2SiF_3^- + (CH_3)_3B \rightarrow (CH_3)_3BF^- + (CH_3)_2SiF_2$	19	3.4	$D[(\mathrm{CH}_3)_3\mathrm{B}-\mathrm{F}^-] > D[(\mathrm{CH}_3)_2\mathrm{F}_2\mathrm{Si}-\mathrm{F}^-],$
				$\Delta G < -21.08$
	$(CH_3)_2BF_2^- + (CH_3)_2SiF_2 + (CH_3)_2SiF_3^- + (CH_3)_2FB$	2	<0.01	$D[(CH_3)_2F_2SI-F - < D[(CH_3)_2FB-F -]$
SF ₆ /(CH ₃) ₃ B/CH ₃ SiF ₃	$(CH_3)_3BF^- + CH_3SiF_3 \rightarrow CH_3SiF_4^- + (CH_3)_3B$	20	9.5	
	$(CH_3)_2BF_2^- + CH_3SiF_3 + CH_3SiF_4^- + (CH_3)_2FB$	J	<0.01	$D[(CH_3)F_3Si-F^-] < D[(CH_3)_2FB-F^-]$
SF ₆ /(C ₂ H ₅) ₃ B/CH ₃ SiF ₃	$CH_3Sil_4^- + (C_2H_5)_3B \rightleftharpoons (C_2H_5)_3BF^- + CH_3SiF_3$	24	$K_{eq} = 2.3^n$	$D[(C_2H_5)_3B-F^{-7}] > D[(CH_3)F_3Si-F^{-7}],$
				$\Delta G = 0.5 \pm 0.18$
	(C,H,),BF, "+ CH,SiF, # CH,SiF, "+ (C,H,),FB	2	< 0.01	$D[(CH_3)F_3Si-F^{-}] < D[(C_2H_5)_2FB-F^{-}]$
SF,/(C,H,),B/SiF,	(C,H_c) , BF - + SiF - + SiF - + (C,H_c) , B	25	2.8	$D[F_ASi-F^-] > D[(C,H_A)_3B-F^-]$
	$(C_2H_5)_2BF_7 - + SiF_4 \rightarrow SiF_5 - + (C_2H_5)_7FB$	26	2.0	$D[F_4Si-F^-] > D[(C_2H_5)_2FB-F^-]$
SF _a /(i-C ₃ H ₂) ₃ B/SiF ₄	$(i\cdot C_3H_7)_3BF^- + SiF_4 \rightarrow SiF_5^- + (i\cdot C_3H_7)_3B$	30	2.2	$D\{F_aSi-F^-\} > D[(i\cdot C_3H_{\tau})_3B-F^-],$
				$\Delta G < -1.78$
	$(i \cdot C_3 H_7)_2 B F_2^- + S i F_4^- \to S i F_5^- + (i \cdot C_3 H_7)_3 B$	31	1.5	$D[F_4Si-F^-] > D[(i\cdot C_3H_7)_2FB-F^-]$
SF,/BF ₃ /CH ₃ SiF ₃	$CH_3SiF_4^- + BF_3 \rightarrow BF_4^- + CH_3SiF_3$	34	2.1	$D[F_3B-F^-] > D[(CH_3)F_3Si-F^-]$
SF./BF3/SiF.	$SiF_5^- + BF_3 \rightarrow BF_4^- + SiF_4$	35	$\sim 3e$	$D[F_3B-F^-] > D[F_4Si-F^-]$

^a Reaction numbers refer to reactions specified in the text. ^b Rate constants are in units of \times 10⁻¹⁰ cm³ molecule⁻¹ s⁻¹, determined from the limiting slopes of reactant ion disappearance, considering product distributions where applicable. ^c Reactions not observed by double resonance, see text for discussions. ^d Total disappearance rate constant for reaction of SF_s with (CH₃),SiF_s; product distributions determined in cyclotron ejection experiments. ^e Rate constants estimated though quantitative data were not obtained, see text for discussion. ^f Calculated using data in Table II. ^g Free energy changes in units of kcal/mol, determined as specified in the text. ^h Equilibrium constant for reaction 24, determined as specified in the text.

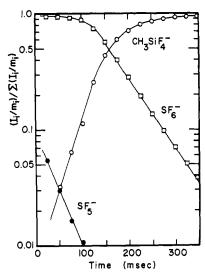


Figure 1. Temporal variation of trapped-anion abundances following a 10-ms 70-eV electron beam pulse in 2.8×10^{-6} Torr CH₃SiF₃ in the presence of trace amounts of SF₆.

SiF₅⁻ appears stable to further reaction under these conditions

 SF_6/CH_3SiF_3 . The temporal variation of ion abundances initiated by the electron beam pulse in 2.8×10^{-6} Torr CH_3SiF_3 in the presence of trace amounts of SF_6 is displayed in Figure 1. Fluoride transfer reactions

$$SF_6^- + CH_3SiF_3 \rightarrow CH_3SiF_4^- + SF_5$$
 (6)

$$SF_5^- + CH_3SiF_3 \rightarrow CH_3SiF_4^- + SF_4$$
 (7)

yielding $CH_3SiF_4^-$, are detected by double resonance. In contrast to processes described below in the $SF_6/(CH_3)_2SiF_2$ system, SF_5^- is not produced by reaction of SF_6^- with CH_3SiF_3 . $CH_3SiF_4^-$ produced by reactions 6 and 7 does not react further under the present conditions.

 $SF_6/(CH_3)_2SiF_2$. Electron impact in a sample of $(CH_3)_2SiF_2$ at 1.6×10^{-6} Torr containing trace amounts of SF_6 results in the temporal variation of trapped anion abundances shown in Figure 2. The pentacoordinate $(CH_3)_2SiF_3^-$ anion is formed by fluoride transfer reactions 8 and 10, analogous to processes

$$SF_{4}^{-} + (CH_{3})_{2}SiF_{2} = \begin{cases} 90\% & (CH_{3})_{2}SiF_{3}^{-} + SF_{5} & (8) \\ HF + (CH_{3})F_{2}SiCH_{2} & or & (9) \\ CH_{3}F + CH_{3}SiF_{2} & (9) & (9) \end{cases}$$

$$SF_5^- + (CH_3)_2 SiF_2 \rightarrow (CH_3)_2 SiF_3^- + SF_4$$
 (10)

observed in SiF₄ and CH₃SiF₃. In addition, double resonance indicates reaction 9 to be responsible for the initial increase in SF₅⁻ shown in Figure 2. Generation of SF₅⁻ has previously been reported in reactions of SF₆⁻ with a variety of molecules (e.g., HX, where X = Cl, Br, I;^{28a} R₃B, where R = CH₃, C₂H₅, i-C₃H₇;^{29,35} HCO₂H, CH₃CO₂H, H₂S^{33b}). The neutral products in reaction 9 remain uncertain. Formation of CH₃F and CH₃SiF₂ radical is calculated to be ~3.5 kcal/mol exothermic.³⁶ (CH₃)₂SiF₃⁻ appears stable to further reaction under these conditions.

SF₆/(CH₃)₃SiF and SF₆/SO₂/(CH₃)₃SiF. Under a variety of experimental conditions, no silicon-containing anions are produced in either SF₆/(CH₃)₃SiF or SF₆/SO₂/(CH₃)₃SiF mixtures. Specifically, no pentacoordinate (CH₃)₃SiF₂⁻ is observed. These gas mixtures were examined by variation of pressure (up to $\sim 10^{-4}$ Torr) and of ion trapping time at constant pressure ($\sim 10^{-6}$ Torr (CH₃)₃SiF). In the SF₆/

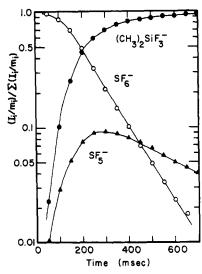


Figure 2. Temporal variation of trapped-anion abundances following a 10-ms 70-eV electron beam pulse in 1.6×10^{-6} Torr (CH₃)₂SiF₂ in the presence of trace amounts of SF₆.

(CH₃)₃SiF mixture, SF₆⁻ (~95%) and SF₅⁻ (~5%), generated by electron capture processes in SF₆, remain completely unreactive as a function of pressure and trapping time. Generation of SF₅⁻ by processes analogous to eq 9 are not observed. In the presence of SO₂, SF₆⁻ and SF₅⁻ react to generate SO₂F⁻ and SO₂F₂⁻.^{28a} The latter anion reacts further with SO₂ by fluoride transfer to yield SO₂F⁻ as the final stable product ion. SO₂F⁻ and SO₂F₂⁻ do not react with (CH₃)₃SiF. In particular, fluoride transfer reactions 11 and 12 are not observed.

$$SO_2F^- + (CH_3)_3SiF * (CH_3)_3SiF_2^- + SO_2$$
 (11)

$$SO_2F_2^- + (CH_3)_3SiF + (CH_3)_3SiF_2^- + SO_2F$$
 (12)

SF₆/(CH₃)₃SiF/(CH₃)₂SiF₂. In further attempts to generate (CH₃)₃SiF₂⁻ from (CH₃)₃SiF, anion reactions in mixtures of SF₆, (CH₃)₃SiF, and (CH₃)₂SiF₂ are examined as a function of pressure and trapping time. The only silicon-containing anion detected is (CH₃)₂SiF₃⁻ produced by reactions 8-10 as described above. Notably, fluoride transfer from (CH₃)₂SiF₃⁻ to (CH₃)₃SiF (reaction 13) is not observed.

$$(CH_3)_2SiF_3^- + (CH_3)_3SiF ** (CH_3)_3SiF_2^- + (CH_3)_2SiF_2$$
(13)

SF₆/(CH₃)₂SiF₂/CH₃SiF₃. The variations in trapped-anion abundances initiated by the electron beam pulse in a 4.7:1 mixture of (CH₃)₂SiF₂ and CH₃SiF₃ (in the presence of traces of SF₆) at 3.4×10^{-6} Torr total pressure are displayed in Figure 3. In addition to reactions 6–10 described above, the fluoride transfer reaction

$$(CH_3)_2SiF_3^- + CH_3SiF_3 \rightarrow CH_3SiF_4^- + (CH_3)_2SiF_2$$
(14)

accounts for the disappearance of $(CH_3)_2SiF_3^-$ at long times in Figure 3. $CH_3SiF_4^-$ is unreactive in this mixture.

SF₆/CH₃SiF₃/SiF₄. In an \sim 1:1 mixture of CH₃SiF₄ and SiF₄ at \sim 2 × 10⁻⁶ Torr, CH₃SiF₃⁻ and SiF₅⁻ are produced initially by reactions 4-7 described above. Difficulties in maintaining constant pressure in the mixture³⁷ precluded detailed examination of the kinetics, but is apparent that the fluoride transfer reaction 15

$$CH_3SiF_4^- + SiF_4 \rightarrow SiF_5^- + CH_3SiF_3$$
 (15)

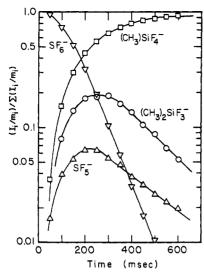


Figure 3. Temporal variation of trapped-anion abundances following a 10-ms 70-eV electron beam pulse in a 4.7:1 mixture of $(CH_3)_2SiF_2$ and CH_3SiF_3 at 3.4×10^{-6} Torr in the presence of trace amounts of SF_6 .

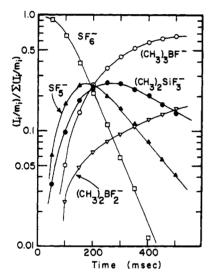


Figure 4. Temporal variation of trapped-anion abundances following a 10-ms 70-eV electron beam pulse in a 7.5:1 mixture of $(CH_3)_2SiF_2$ and $(CH_3)_3B$ at 2.2×10^{-6} Torr in the presence of trace amounts of SF_6 .

(confirmed by double resonance) proceeds rapidly to completion.

 $SF_6/(CH_3)_3B/(CH_3)_2SiF_2$. The temporal variation in anion abundances initiated by the electron beam pulse in a 7.5:1 mixture of $(CH_3)_2SiF_2$ and $(CH_3)_3B$ at a constant pressure of 2.2×10^{-6} Torr in the presence of traces of SF_6 is shown in Figure 4. Reactions 16-18

$$SF_5^- + (CH_3)_3B$$
 \longrightarrow $SF_5^- + HF + (CH_3)_2BCH_2$ (16)
 $(CH_3)_2BF_2^- + SF_4 + CH_3$ (17)

$$SF_5^- + (CH_3)_3B \rightarrow (CH_3)_3BF^- + SF_4$$
 (18)

have been previously reported in $SF_6/(CH_3)_3B$ mixtures.^{29,35} In addition to reactions 8–10 described above, fluoride transfer from $(CH_3)_2SiF_3^-$ to $(CH_3)_3B$

$$(CH_3)_2SiF_3^- + B(CH_3)_3 \rightarrow (CH_3)_3BF^- + (CH_3)_2SiF_2$$
(19)

is detected by double resonance, accounting for the decay of $(CH_3)_2SiF_3^-$ at long times in Figure 4. Both $(CH_3)_3BF^-$ and $(CH_3)_2BF_2^-$ are stable to further reaction in this mixture.

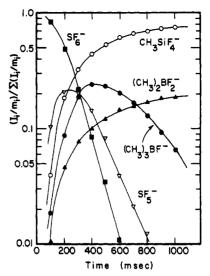


Figure 5. Temporal variation of trapped-anion abundances following a 10-ms 70-eV electron beam pulse in a 4.4:1 mixture of $(CH_3)_3B$ and CH_3SiF_3 at 5.4×10^{-7} Torr in the presence of trace amounts of SF_6 .

 $SF_6/(CH_3)_3B/CH_3SiF_3$. Figure 5 shows the time evolution of anion concentrations following the electron beam pulse in a 4.4:1 mixture of $(CH_3)_3B$ and CH_3SiF_3 at a total pressure of 5.4×10^{-7} Torr in the presence of trace amounts of SF_6 . In addition to reactions 6 and 7 described above and reactions 16-18 previously reported in the $SF_6/B(CH_3)_3$ system, 29,35 the fluoride transfer reaction

$$(CH_3)_3BF^- + CH_3SiF_3 \rightarrow CH_3SiF_4^- + B(CH_3)_3$$
 (20)

is observed in the $SF_6/(CH_3)_3B/CH_3SiF_3$ mixture. $(CH_3)_2BF_2^-$ does not react with CH_3SiF_3 . $CH_3SiF_4^-$ is also stable to further reaction in the mixture.

 $SF_6/B(C_2H_5)_3/CH_3SiF_3$. In a 1:1 mixture of $(C_2H_5)_3B$ and CH_3SiF_3 at a constant pressure of 7.9×10^{-7} Torr containing traces of SF_6 , the temporal variation of anion abundances depicted in Figure 6 is initiated by the electron beam pulse. Boron-containing anions, $(C_2H_5)_3BF^-$ and $(C_2H_5)_2BF_2^-$, are initially produced via reactions 21–23, previously reported from

$$SF_{5}^{-} + HF + (C_{2}H_{5})_{2}BC_{2}H_{4}$$
 (21)

$$SF_{5}^{-} + HF + (C_{2}H_{5})_{2}BC_{2}H_{4}$$
 (21)

$$(C_{2}H_{5})_{2}BF_{2}^{-} + SF_{4} + C_{2}H_{5}$$
 (22)

$$SF_{5}^{-} + (C_{2}H_{5})_{3}B \rightarrow (C_{2}H_{5})_{3}BF^{-} + SF_{4}$$
 (23)

studies of $SF_6/(C_2H_5)_3B$ mixtures.²⁹ $CH_3SiF_4^-$ is produced, at short reaction times in Figure 6, by processes 6 and 7 described above. For trapping times beyond ~ 500 ms in Figure 6, the relative concentrations of $(C_2H_5)_3BF^-$ and $CH_3SiF_4^-$ approach a constant ratio of 2.30 \pm 0.05. Double resonance indicates that the reaction

$$CH_3SiF_4^- + (C_2H_5)_3B \rightleftharpoons (C_2H_5)_3BF^- + CH_3SiF_3$$
 (24)

proceeds in both forward and reverse directions. These results suggest that a fluoride transfer equilibrium is established between $(C_2H_5)_3B$ and CH_3SiF_3 with the balance lying preferentially to the right in reaction 24. The equilibrium constant $K_{eq} = 2.3$ is determined,³⁸ corresponding to a free energy change $\Delta G = -0.5 \pm 0.1$ kcal/mol. With the conditions used, $(C_2H_5)_2BF_2^-$ is not observed to react further with CH_3SiF_3 .

 $SF_6/(C_2H_5)_3B/SiF_4$. In trapped-ion experiments on a 5.4:1 mixture of $(C_2H_5)_3B$ and SiF_4 at 1.2×10^{-6} Torr in the presence of trace amounts of SF_6 , ions SiF_5^- , $(C_2H_5)_3BF^-$, and $(C_2H_5)_2BF_2^-$ are formed initially via processes 4, 5, and 21-23 described above for the individual components. At long reaction times SiF_5^- abundance continues to increase at the

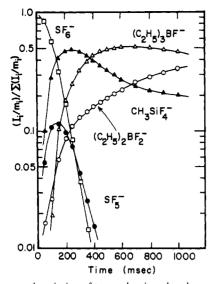


Figure 6. Temporal variation of trapped-anion abundances following a 10-ms 70-eV electron beam pulse in a 1:1 mixture of $(C_2H_5)_3B$ and CH_3SiF_3 at 7.9×10^{-7} Torr in the presence of trace amounts of SF_6 .

expense of $(C_2H_5)_3BF^-$ and $(C_2H_5)_2BF_2^-$. Double resonance indicates the occurrence of the rapid fluoride transfer reactions

$$(C_2H_5)_3BF^- + SiF_4 \rightarrow SiF_5^- + (C_2H_5)_3B$$
 (25)

$$(C_2H_5)_2BF_2^- + SiF_4 \rightarrow SiF_5^- + (C_2H_5)_2FB$$
 (26)

 SiF_5^- eventually comprises ~100% of the ion abundance and is not observed to react further under the present conditions.

 $SF_6/B(i-C_3H_7)_3/SiF_4$. The temporal variation of ion concentrations following the electron beam pulse in a 3.5:1 mixture of $B(i-C_3H_7)_3$ and SiF_4 at 9.4×10^{-7} Torr total pressure (in the presence of trace SF_6) is displayed in Figure 7. Boroncontaining anions are formed initially by reactions 27–29, previously observed in $SF_6/(i-C_3H_7)_3B$ mixtures.²⁹

$$SF_{6}^{-} + B(i \cdot C_{3}H_{7})_{3} \xrightarrow{\qquad \qquad } SF_{5}^{-} + HF + (i \cdot C_{3}H_{7})_{2}BC_{3}H_{6} (27)$$

$$(i \cdot C_{3}H_{7})_{2}BF_{2}^{-} + SF_{4} + i \cdot C_{3}H_{7} (28)$$

$$SF_5^- + B(i-C_3H_7)_3 \rightarrow (i-C_3H_7)_3BF^- + SF_4$$
 (29)

In addition to processes 4 and 5 described above, SiF₅⁻ is generated by the fluoride transfer reactions

$$(i-C_3H_7)_3BF^- + SiF_4 \rightarrow SiF_5^- + B(i-C_3H_7)_3$$
 (30)

$$(i-C_3H_7)_2BF_2^- + SiF_4 \rightarrow SiF_5^- + (i-C_3H_7)_2FB$$
 (31)

and is not observed to react further under the present conditions.

 $SF_6/BF_3/CH_3SiF_3$. In trapped-ion experiments on a 1.1:1 mixture of CH_3SiF_3 and BF_3 at 1.2×10^{-6} Torr pressure containing trace amounts of SF_6 , $CH_3SiF_4^-$ is produced initially via reactions 6 and 7 described above and BF_4^- is generated by previously reported processes 32 and $33.^{27,29,33a}BF_4^-$ is produced by fluoride transfer from $CH_3SiF_4^-$ (reaction 34). No evidence is obtained for the reverse of reaction 34, and BF_4^- appears stable to further reaction under the conditions utilized.

$$SF_6^- + BF_3 \rightarrow BF_4^- + SF_5$$
 (32)

$$SF_5^- + BF_3 \rightarrow BF_4^- + SF_4$$
 (33)

$$CH_3SiF_4^- + BF_3 \rightarrow BF_4^- + CH_3SiF_3$$
 (34)

SF₆/BF₃/SiF₄. In an \sim 1:1 mixture of SiF₄ and BF₃ at \sim 1 × 10⁻⁶ Torr pressure in the presence of trace amounts of SF₆,

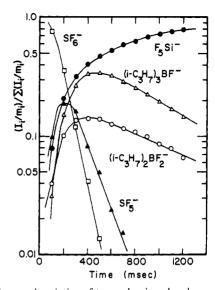


Figure 7. Temporal variation of trapped-anion abundances following a 10-ms 70-eV electron beam pulse in a 3.5:1 mixture of $(i-C_3H_7)_3B$ and SiF₄ at 9.4×10^{-7} Torr in the presence of trace amounts of SF₆.

fluoride transfer reactions 4, 5, 32, and 33 described above lead to the formation of SiF_5^- and BF_4^- . Although experimental difficulties in maintaining stable gas pressures in this mixture³⁷ inhibit detailed examination of the reaction kinetics, it is clear that fluoride transfer from SiF_5^- to BF_3

$$SiF_5^- + BF_3 \to BF_4^- + SiF_4$$
 (35)

proceeds rapidly to completion. No evidence is obtained for the back reaction and BF_4^- does not appear to react further under the present conditions.

Discussion

 $SF_6^-,SF_5^-/(CH_3)_nF_{4-n}Si$ (n=0-3). Observations of pentacoordinate anions $SiF_5^-,CH_3SiF_4^-$, and $(CH_3)_2SiF_3^-$ formed by fluoride transfer reactions, between the respective neutral silanes and SF_6^- and SF_5^- (Table I), are in agreement with previous studies. However, under no conditions was fluoride transfer to $(CH_3)_3SiF$ observed in the present work. The discrepancy between this result and the observations of Dillard are not fully understood, although differences in the energy of reactants SF_6^- and SF_5^- between the two studies may be responsible. In trapped-ion ICR, inelastic collisions with neutral molecules during the long trapping times effectively thermalize the ions. Thus, reactions observed are assumed to be exothermic or thermoneutral for thermal energy reactants.

Reactions 5, 7, and 10 require that the fluoride affinities of $(CH_3)_2SiF_2$, CH_3SiF_3 , and SiF_4 exceed ~54 kcal/mol, the value previously reported^{28a} for $D[SF_4-F^-]$. Failure to detect $(CH_3)_3SiF_2^-$ by reaction with SF_6^- implies that $D[(CH_3)_3FSi-F^-] < D[SF_5-F^-] = 11 \pm 8$ kcal/mol,^{28a} a drastic decrease in Lewis acidity of $(CH_3)_3SiF$ as compared with the more highly fluorinated silanes. It is possible that fluoride transfer from SF_6^- to $(CH_3)_3SiF$ is not observed due to kinetic rather than thermodynamic effects.^{28a} The fluoride affinity of SO_2 , though not known precisely, is very near that of SF_4 .^{27,28a} Failure to observe $(CH_3)_3SiF_2^-$ by reaction of SO_2F^- or SF_5^- requires that $D[(CH_3)_3FSi-F^-]$ be <54 kcal/mol.

SF₆/Silane Mixtures. Reactions 13-15 imply the order of Lewis acidities $(CH_3)_3SiF < (CH_3)_2SiF_2 < CH_3SiF_3 < SiF_4$. As previously observed in studies of anion transfer processes in borane Lewis acids, ^{29,35} alkyl substitution in place of fluorine α to the acceptor center results in decreased acidity.

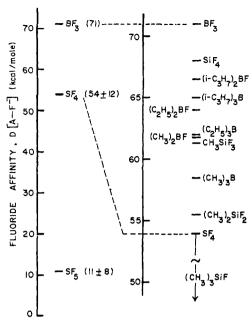


Figure 8. Schematic representation of Lewis acidities of neutral acceptors A using F^- ion as reference base (expressed as fluoride affinities $D[A-F^-]$).

SF₆/Silane-Borane Mixtures. The fluoride affinity of SiF₄ is known from previous studies to be below that of BF₃ (71 kcal/mol).²⁷ Quantification of the fluoride affinities of $(CH_3)_2SiF_2$, CH_3SiF_3 , and SiF_4 , within the 17-kcal range bracketed by SF₄ and BF₃, is obtained from the preferred directions of fluoride transfer reactions with borane Lewis acids previously shown to span this same fluoride affinity range.²⁹ Taken collectively with previous results,²⁹ these reactions (Table I) establish the fluoride affinity order $(CH_3)_3SiF < SF_4 < (CH_3)_2SiF_2 < (CH_3)_3B < CH_3SiF_3 < (CH_3)_2FB < (C_2H_5)_3B < (C_2H_5)_2FB < (i-C_3H_7)_3B < (i-C_3H_7)_2FB < SiF_4 < BF₃ in the gas phase. Only in the case of reaction 24 in the SF₆/<math>(C_2H_5)_3B/CH_3SiF_3$ system is evidence of an equilibrium obtained.

Thermochemical Considerations. The observed $K_{\rm eq}=2.3$ favoring fluoride bound to $(C_2H_5)_3B$ requires that a free energy change of ~ 0.5 kcal/mol accompany reaction 24. Trapped-ion ICR techniques are generally able to provide accurate determinations of similar anion transfer equilibria and associated free energy changes up to values of ~ 3 kcal/mol. Larger free energy changes yield equilibrium constants (and forward and reverse rate constants) exceeding the dynamic range of the technique.

Considering the relative order of fluoride affinities stated above, it is noteworthy that reactions 14, 19, and 30 proceed only in the forward direction. This conclusion is apparent from data in Figures 3, 4, and 7 and the failure to detect the reverse reactions by double resonance. The ratios of reactant and product ions at long times and ratios of neutral acid pressures place lower limits on $K_{\rm eq}$ of >83.2, >34.9, and >18.9 for reactions 14, 19, and 30, respectively, corresponding to free energy changes of <-2.6, <-2.1, and <-1.7 kcal/mol. Similar limits apply to reactions 15 and 30.

A quantity more relevant to discussion of adduct bond energies $D[A-F^-]$ is the enthalpy change ΔH , which is related to the free energy change $\Delta G = \Delta H - T\Delta S = -RT \ln K_{\rm eq}$. The present ICR instrumentation is limited to measurements at ambient temperatures, precluding experimental determination of ΔH from variations of $K_{\rm eq}$ and thus ΔG with temperature. Within reasonable assumptions, the statistical mechanical formalism of Searles and Kebarle³⁹ may be used to estimate that ΔS for reaction 24 is negligible. Thus $\Delta H \cong -0.5$ kcal/mol for fluoride transfer from CH₃SiF₄⁻ to

Table II. Thermochemical Quantities a Utilized in the Calculations

<u>A</u>	$\Delta H_{\mathrm{f}}(\mathrm{A})$	D[A-F-]		
SF ₄	-183 ± 6^{b} 54 ± 12^{b}			
SF ₅	-232 ± 4^{b} 11 ± 8^{b}			
SF ₅ -	-298 ± 6			
SF ₆ ⁻	-304.4 ± 3.5^{b}			
CH₃F	-55.9°			
HF	-64.9 ± 0.3^{b}			
CH_3SiF_2	-166.0^{d}			
$(CH_3)_3SiF$	-126.0^{d}			
$(CH_3)_2SiF_2$	-212.0^d			
CH_3SiF_3	-296.0^{d}			
SiF ₄	-386.0^d <71 ^f			
$(CH_3)_3B$	-29.3^{e}	58.5e		
$(CH_3)_2FB$	$\leq -61.9^{e}$ 61.8 ^e			
$(C_2H_5)_3B$	-36.0^{e} 62.0 ^e			
$(C_2H_5)_2FB$	$\leq -58.1^{e} 64.0^{e}$			
$(i-C_3H_7)_3B$	-56.3^{e} 65.0 ^e			
$(i-C_3H_7)_2FB$	$\leq -67.5^e$ 66.5 ^e			
BF_3	-271.7^{e} 71^{f}			
BF ₄ -	-404.0°			
F-	-61.3 ± 0.3^{b}			

^a All data are in units of kcal/mol at 298 K. ^b Reference 28a. ^c M. K. Murphy and J. L. Beauchamp, J. Am. Chem. Soc., 99, 2085 (1977). ^d J. A. Kerr and D. M. Timlin, Int. J. Chem. Kinet., 3, 427 (1971). ^e Reference 29. ^f Reference 27.

Table III. Thermochemical Quantities^a Describing Ions and Neutrals of Silicon

Acid, A	$D[A-F^+]^b$	$\Delta H_{\rm f}[{ m A}]^c$	$\Delta H_{\rm f}[{\rm AF}^-]^d$
SiF ₄	68.0	-386.0	-515.3°
CH ₃ SiF ₃	61.5	-296.0	-418.5f
(CH ₃) ₂ SiF ₂	55.5	-212.0	-328.5°
(CH ₃) ₃ SiF	<54	-126.0	>-241.0°

^a All data are in units of kcal/mol at 298 K. ^b Bond dissociation energies determined as specified in the text. ^c Heats of formation of the silanes from Table II. ^d Calculated using data in Table II and this table. ^e Calculated from $\Delta H_f[\mathrm{SiF}_5^-] = \Delta H_f[\mathrm{SiF}_4] + \Delta H_f[\mathrm{BF}_4] - \Delta H_f[\mathrm{BF}_3] - \Delta H_r$, where $\Delta H_r = -3$ kcal/mol for reaction 35. ^f Calculated from $\Delta H_f[\mathrm{CH}_3\mathrm{SiF}_4] = \Delta H_f[\mathrm{CH}_3\mathrm{SiF}_3] + \Delta H_f[(C_2\mathrm{H}_5)_3\mathrm{BF}^-] - \Delta H_f[(C_2\mathrm{H}_5)_3\mathrm{B}] - \Delta H_r$, where $\Delta H_r = -0.5$ kcal/mol for reaction 24. ^g Calculated from $\Delta H_f[(\mathrm{CH}_3)_2\mathrm{SiF}_3^-] = \Delta H_f[(\mathrm{CH}_3)_3\mathrm{BF}^-] + \Delta H_f[(\mathrm{CH}_3)_2\mathrm{SiF}_2] - \Delta H_f[(\mathrm{CH}_3)_3\mathrm{BF}] - \Delta H_r$, where $\Delta H_r = -3$ kcal/mol for reaction 19. ^h Estimated from $\Delta H_f[(\mathrm{CH}_3)_3\mathrm{SiF}_2^-] > \Delta H_f[\mathrm{SF}_5^-] + \Delta H_f[(\mathrm{CH}_3)_3\mathrm{SiF}] - \Delta H_f[\mathrm{SF}_4]$ from failure to observe F⁻ transfer from SF₅⁻ to (CH₃)₃SiF.

$(C_2H_5)_3B$.

Evaluation of the present results along with the results of the previous study of the boranes,²⁹ assuming a minimum separation of \sim 3 kcal/mol in cases where no reverse reactions were evidenced, affords a quantitative scale of fluoride affinities, which is fully consistent with all available data, as displayed schematically in Figure 8. Using available thermochemical data (Table II) and estimates of 68, 61.5, and 55.5 kcal/mol for the fluoride affinities of SiF4, CH3SiF3, and (CH₃)₂SiF₂, heats of formation for the silane-fluoride Lewis adduct anions can be derived (Table III). Taking -3, -0.5, and -3 kcal/mol for the enthalpy changes for reactions 19, 24, and 35, respectively, yields estimates of $\Delta H_f((CH_3)_2SiF_3^-)$ = -328.5, $\Delta H_f(CH_3SiF_4^-) = -418.5$, and $\Delta H_f(SiF_5^-) =$ -515.3 kcal/mol. Failure to observe (CH₃)₃SiF₂⁻ by reaction of $(CH_3)_3SiF$ with SF_5^- or SO_2F^- requires that $\Delta H_f((CH_3)_3SiF_2^-)$ exceed -241.0 kcal/mol. Thermochemical data describing the neutral silane Lewis acids and fluoride adducts are summarized in Table III.

Substituent Effects on Silane Lewis Acidity. From the data in Figure 8 and Table III, which quantitatively describe the

gas-phase Lewis acidities of the fluoromethylsilanes with fluoride ion as the reference base, it is apparent that the intrinsic acceptor strengths (measured as fluoride affinities, $D[A-F^-]$) of borane and silane Lewis acids are quite comparable in absolute magnitude. The effects of fluorine and alkyl substituents on boron and silicon follow similar trends, namely that alkyl groups lower the acidity relative to fluorine substituents. Alkyl groups appear to more strongly destabilize the silane-fluoride relative to the borane-fluoride adducts (Figure 8). In contrast to the present results, adduct strengths of these same silanes toward (CH₃)₃N as reference base have been previously shown to be much lower than those for borane Lewis acids.^{22b} Measurements of gas-phase dissociation equilibria for processes such as eq 1 where $B = (CH_3)_3N$ indicate a Lewis acidity order $(CH_3)_3B\gg SiF_4\gg CH_3SiF_3.^{19-21,22b,40}$ The steric requirements of the bulky amine base clearly have a marked effect on the stability of adducts with the silanes. Attenuation of steric effects are expected for adducts involving the smaller monatomic fluoride ion as reference base.

Upon replacement of F by CH₃, the fluoride affinity of CH₃SiF₃ is decreased by ~6.5 kcal/mol relative to that of SiF₄. Similarly, $(CH_3)_2SiF_2$ binds $F^- \sim 6$ kcal/mol less strongly than does CH₃SiF₃. While the actual value of the fluoride affinity of (CH₃)₃SiF is yet to be determined, the failure to observe F⁻ transfer from $SF_6^- \{D[SF_5 - F^-] = 11 \pm$ 8 kcal/mol^{28a}} implies a dramatic decrease in acceptor strength of ~40 kcal/mol resulting from substitution of a third CH₃ for F on silicon.

Methyl substituent effects on the stability of pentacoordinate fluoromethylsilyl anions observed in the present work have interesting analogies in the isoelectronic neutral methylfluorophosphorane series PF_5 , CH_3PF_4 , $(CH_3)_2PF_3$, and $(CH_3)_3PF_2$.^{41,42} The species $(CH_3)_4PF$ is unknown and it has been proposed that this least stable member of the phosphorane series would better be described as an ionic phosphorium salt [(CH₃)₄P]+F⁻.⁴² By a variety of spectroscopic techniques, it has been conclusively demonstrated that the phosphoranes have trigonal-bipyramidal geometry with the less electronegative organic groups preferentially occupying equatorial sights.⁴¹ Apical metal-substituent bond lengths are substantially longer than bonds at equatorial positions. Low-temperature ¹H and ¹⁹F NMR spectra of SiF₅⁻, CH₃SiF₄⁻, and $(C_6H_5)SiF_4$ in low polarity solvents²⁴ indicate that these fluorosilicate anions also have trigonal-bipyramidal structures with the organic groups occupying equatorial sights. This positional preference, governed primarily by differences in substituent electronegativity, has previously been termed "the polarity rule" and is known to be general to a variety of trigonal-bipyramidal complexes.5,41

Analogous to the present observations of decreasing silane-fluoride bond strengths accompanying successive substitution of CH₃ for F, axial P-F bonds are known to lengthen and weaken in going from PF₅ to CH₃PF₄, (CH₃)₂PF₃, and (CH₃)₃PF₂.^{41,42} Under the influence of the electrostatic field imposed by a trigonal-bipyramidal array of electronegative fluorine substituents, the 3d_z² orbital contracts sufficiently to make its inclusion in the bonding energetically favorable. 42,43 Successive replacement of F by the more electropositive CH₃ would result then in a concomitant decrease in the net positive character of the central atom and lead to a gradual withdrawal of the d orbitals from the bonding scheme. Ultimately the five-coordinate trigonal-bipyramidal structure would cease to be energetically attractive.⁴² In the pentacoordinate silicon anions, the $3d_{z^2}$ orbital is probably much more diffuse than in the neutral phosphorus compounds. Thus, abrupt decrease in stability of the adducts occurs upon substitution of just three CH₃ groups on the central atom.

Acknowledgment. This work was supported in part by the

Energy Research and Development Administration under Grant No. E(04-3)767-8. The spectrometer used for these experiments was funded in part by the National Science Foundation under Grant No. NSF-GP-18383.

References and Notes

- Camille and Henry Dreyfus Teacher-Scholar (1971-1976).
- (a) G. N. Lewis, "Valence and the Structure of Molecules", The Chemical Catalogue Co., New York, N.Y., 1923; (b) G. N. Lewis, J. Franklin Inst., 226,
- (3) For recent review of Lewis acid properties of group 3b and metal cation acceptors, see: (a) D. P. N. Satchell and R. S. Satchell, Chem. Rev., 69, 251 (1969); (b) F. G. A. Stone, ibid., 58, 101 (1958), and references contained therein
- (4) For discussions of how the nature of the acceptor and donor species affect the strengths of the acid-base interactions, see: R. G. Pearson, Ed., and Soft Acids and Bases", Dowden, Hutchinson, and Ross Publishers, Stroudsburg, Pa., 1973.
- (5) F. A. Cotton and G. Wilkinson, "Advanced Inorganic Chemistry: A Comprehensive Text", 3rd ed, Wiley-Interscience, New York, N.Y., 1972,
- R. C. Dougherty and J. D. Roberts, Org. Mass Spectrom., 8, 81 (1974)
- (7) R. C. Dougherty, J. Dalton, and J. D. Roberts, Org. Mass Spectrom., 8, 77 (1974)
- (8) R. C. Dougherty, Org. Mass Spectrom., 8, 85 (1974).
 (9) R. Yamdagni and P. Kebarle, J. Am. Chem. Soc., 93, 7139 (1971).
- (10) P. Baybutt, Mol. Phys., 29, 389 (1975).

- (11) D. L. Wilhite and L. Spialter, J. Am. Chem. Soc., 95, 2100 (1973).
 (12) A. Dedieu and A. Veillard, J. Am. Chem. Soc., 94, 6730 (1972).
 (13) R. F. W. Bader, A. J. Duke, and R. R. Messer, J. Am. Chem. Soc., 95, 7715
- (14) C. D. Ritchie and G. A. Chappell, *J. Am. Chem. Soc.*, **92**, 1819 (1970).
- (15) J. J. C. Mulder and J. S. Wright, Chem. Phys. Lett., 5, 445 (1970).
- (16) L. P. Lowe, J. Am. Chem. Soc., 93, 301 (1971).
 (17) W. Th. A. M. Van der Lugt and P. Ros, Chem. Phys. Lett., 4, 389 (1970).
- (18) P. Cremaschi, A. Gamba, and M. Simonetta, Theor. Chim. Acta, 25, 237
- (19) C. J. Wilkens and D. K. Grant, *J. Chem. Soc.*, 927 (1953).
 (20) A. B. Burg in "Fluorine Chemistry", Vol. I, J. H. Simons, Ed., Academic Press, New York, N.Y., 1950, pp 108–109.
- (21) J. E. Ferguson, D. K. Grant, R. H. Hickford, and C. J. Wilkins, J. Chem. Soc., 99 (1959).
- (22) (a) C. Eaborn, "Organosilicon Compounds", Academic Press, New York, N.Y., 1960; (b) L. H. Sommer, "Stereochemistry, Mechanism and Silicon' McGraw-Hill, New York, N.Y., 1965, and references contained therein.
- (23) H. C. Clark, P. W. R. Corfield, K. R. Dixon, and J. A. Ibers, J. Am. Chem. Soc., 89, 3360 (1967).
- (24) F. Klanberg and E. L. Muetterties, Inorg. Chem., 7, 155 (1968).
 (25) K. A. G. MacNeil and J. C. J. Thynne, Int. J. Mass Spectrom. Ion Phys., 3,
- (26) J. G. Dillard, Inorg. Chem., 13, 1491 (1974).
- (27) J. C. Haartz and D. H. McDaniel, J. Am. Chem. Soc., 95, 8562 (1973).
 (28) (a) M. S. Foster, S. A. Sullivan, and J. L. Beauchamp, to be submitted for publication, D[SF₄-F⁻] = 54 ± 12 kcal/mol; (b) D[BF₃-F⁻] = 71 kcal/mol, taken from ref 27.
- (29) M. K. Murphy and J. L. Beauchamp, J. Am. Chem. Soc., submitted for publication.
- (30) (a) T. B. McMahon and J. L. Beauchamp, Rev. Sci. Instrum., 43, 509 (1972); (b) M. S. Foster and J. L. Beauchamp, J. Am. Chem. Soc., 97, 4808 (1975); (c) R. J. Blint, T. B. McMahon, and J. L. Beauchamp, J. Am. Chem. Soc., 96, 1269 (1974).
- (31) K. Jaeger and A. Henglein, Z. Naturforsch, A, 22, 700 (1967)
- (32) (a) D. Holtz, J. L. Beauchamp, and J. R. Eyler, *J. Am. Chem. Soc.*, **92**, 7045 (1970); (b) R. H. Wyatt, D. Holtz, T. B. McMahon, and J. L. Beauchamp, *Inorg.* Chem., 13, 1511 (1974); (c) D. P. Ridge and J. L. Beauchamp, J. Am. Chem. Soc., 96, 637 (1974).
- (33) (a) J. G. Dillard and T. C. Rhyne, J. Am. Chem. Soc., 91, 6521 (1969); (b) M. S. Foster and J. L. Beauchamp, *Chem. Phys. Lett.*, **31**, 479 (1975). (34) T. C. Rhyne and J. G. Dillard, *Inorg. Chem.*, **10**, 730 (1971).
- (35) M. K. Murphy and J. L. Beauchamp, J. Am. Chem. Soc., 98, 1433 (1976)
- (36) Calculated for reaction 9 using $\Delta H_{\rm f}$ values in Table II. (37) Difficulties in maintaining stable total pressure in these mixtures is probably due to adhesion or slight condensation of sample on metal surfaces of the inlet leak valves.
- (38) For an equilibrium such as reaction 2, K_{eq} = [A₂B][A₁]/[A₁B][A₂]; for reaction 24 [A₁B] and [A₂B] are the ion abundances of CH₃SiF₄⁻ and (C₂H₅)₃BF⁻, respectively, from data at long time in Figure 6, and A₁ and A₂ are the pressures of neutrals CH₃SiF₃ and (C₂H₅)₃B, respectively.
 (39) (a) S. K. Searles and P. Kebarle, Can. J. Chem., 47, 2619 (1969); (b) ΔS = ΔS_{trans}! + ΔS_{electr} + ΔS_{vibr} + ΔS_{rot}; (c) ΔS_{trans}! = +0.01 eu. ΔS_{electr} = 0, since both reactant and product adducts are probably singlets. ΔS_{strans}
- = 0, since both reactant and product adducts are probably singlets, ΔS_{vibr} \sim 0 (assumed), and $\Delta S_{\rm rot} \sim$ 0 (no change in rotational symmetry numbers, and changes in moments of inertia are assumed to approximately cancel).
- (40) H. C. Brown, H. Bartholomay, and M. D. Taylor, J. Am. Chem. Soc., 66, 435 (1944).
- (41) For a recent review of pentacoordinate phosphorus compounds, see: R. Luchenbach, "Dynamic Stereochemistry of Pentacoordinated Phosphorus Compounds and Related Elements', Georg Thieme Verlag, Stuttgart, W. Germany, 1973, and references contained herein.
- (42) A. J. Downs and R. Schmutzler, Spectrochim. Acta, Part A, 23, 68
- (43) D. P. Craig and E. A. Magnusson, J. Chem. Soc., 4895 (1956).