PRENYLFLAVANS FROM TEPHROSIA WATSONIANA*

FEDERICO GOMEZ, LEOVIGILDO QUIJANO, JOSE S CALDERON, CARLOS RODRIQUEZ and TIRSO RIOS

Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 México, D F

(Received 22 June, 1984)

Key Word Index-Tephrosia watsoniana, Leguminosae, new prenylflavans

Abstract—The aerial parts of *Tephrosia watsoniana* afforded five new flavonoids named tephrowatsin A, B, C, D and E Their structures and stereochemistries were established by spectroscopic methods and chemical transformations

INTRODUCTION

Various rotenoids, isoflavones, flavones, chalcones, flavonols and flavanones have been isolated from plants of genus *Tephrosia* [1] Some of them possess insecticidal activity [2] As part of our chemosystematic study of plants of the genus *Tephrosia*, we previously investigated T madrensis, T nitens and isolated 5,7-dimethoxy-8-prenylflavan (1), 5-hydroxy-7-methoxy-8-prenylflavanone (2a) [3] and nitenin (3) [4]

We now wish to report the isolation from *Tephrosia* watsoniana of the known 5,7-dimethoxy-8-prenylflavan (1) [3], 5-hydroxy-7-methoxy-8-prenylflavanone (2a) [3], ninetin (3) [4], 5-methylquercetin, and a mixture of sitosterol and stigmasterol, and also the isolation and structure elucidation of five new flavonoids which we have named tephrowatsins A (4), B (5), C (6), D (7) and E (8)

RESULTS AND DISCUSSION

Tephrowatsın A (4), $C_{22}H_{26}O_4$ (M⁺ 354), $[\alpha]_D$ -43 3°, was a colourless oil whose IR spectrum demonstrated the presence of hydroxyl (3440 cm⁻¹) but not carbonyl groups The UV spectrum λ_{max} nm (ϵ), 209 (57998), 273 (1309) indicated the presence of an unconjugated aromatic system The structure of 4 was deduced from the ¹H NMR spectrum (Table 1) which was in part close to that of the flavanone 2b [5] The presence of two one-proton doublet of doublets at $\delta 515$ (J = 3 Hz, J = 12 Hz) and 50 (J = 3 Hz, J = 4 Hz) and one two-proton multiplet at $\delta 22$ suggested that the tephrowatsin A must be the 4-hydroxyflavan 4 Confirmation of structure and stereochemistry of tephrowatsin A (4) was achieved by Sarett oxidation which gave the corresponding flavanone 2b All the spectroscopic data of the product obtained were identical to those of the 5,7-dimethoxy-8prenylflavanone (2b) [5]

Tephrowatsin $\hat{B}(5)$, $\hat{C}_{22}H_{24}O_3$ (M⁺ 336) was an oil Its IR spectrum indicated the absence of hydroxyl and carbonyl groups The ¹HNMR spectrum (Table 1) indicated that tephrowatsin B must be the dehydration product of 4, since it showed two olefinic proton signals as a doublet of doublets at $\delta 6$ 79 (J = 10 Hz, J = 3 Hz) and 5 62 (J = 10 Hz, J = 4 Hz) and the H-2 signal as a doublet of doublets at 58 (J = 4 Hz, J = 3 Hz) indicating an allylic interaction between H-2 and H-4 The mass spectrum showed peaks at m/z 336 [M]⁺, 321 [M-Me]⁺, 281 [M-C₄H₇]⁺ and 105 [C₇H₅O]⁺ which were consistent with the proposed structure for tephrowatsin B (5) Final confirmation of structure of 5 was achieved by dehydration of tephrowatsin A (4) with MgSO₄ which furnished tephrowatsin B (5)

Tephrowatsin C (6) was isolated as colourless needles, mp $72-74^{\circ}$, it analysed for $C_{21}H_{24}O_5$ (M⁺ 356) Its IR spectrum showed strong absorption at 1640 cm⁻¹ (chelated C=O) and 3400 cm⁻¹ (OH) The UV spectrum λ_{max} nm (e) 290 (19 090), 339 (4236) suggested a flavanone structure The structure of 6 clearly followed from the ¹H NMR spectrum (Table 1) which showed the typical ABX system, due to H-2 and H-3 protons of the flavanone nucleus As in case of the flavonoids 4 and 5, tephrowatsin C (6) has an unsubstituted B-ring and trisubstituted Aring The ¹HNMR showed signals for one methoxyl group at δ 3 84 and a chelated hydroxyl group at δ 12 05, therefore the hydroxyl group must be at C-5 and the methoxyl group could be placed at C-7 While tephrowatsin A (4) and B (5) have a prenyl side chain at C-8, tephrowatsin C (6) has a 3-hydroxyisopentyl group as indicated by the sharp singlet at $\delta 12$ (6H) and two methylene multiplets at 1 60 and 2 65 in the ¹H NMR spectrum of 6 The negative value of the optical rotation, $[\alpha]_{\rm D} - 50^{\circ}$, indicated the absolute configuration 'S' at C-2 in tephrowatsin C (6) [6] Confirmation on structure 6 was achieved by dehydration with MgSO₄ which furnished the known 7-methylglabranin (2a), mp 128-129°, identified by the IR, 'HNMR and mass spectra and comparison with an authentic sample

Tephrowatsin D (7), $C_{23}H_{28}O_4$ (M^+ 368) was isolated as a colourless oil The UV spectrum λ_{max} nm (ϵ) 206 (31 542), 270 (932), 276 (943) suggested the presence of an unconjugated aromatic system The IR indicated the absence of carbonyl and hydroxyl groups The ¹H NMR spectrum (Table 1) of 7 was very similar to that of 5,7dimethoxy-8-prenylflavan (1) previously isolated from *Tephrosia madrensis* [3] Tephrowatsin D (7), differs from 1 by the presence of an extra methoxy group at the C-2 position, since the ¹H NMR spectrum of 7 lacked the H-2 doublet of doublets, instead it showed a sharp methoxyl

^{*}Contribution No 687 from Instituto de Química de la UNAM (México)

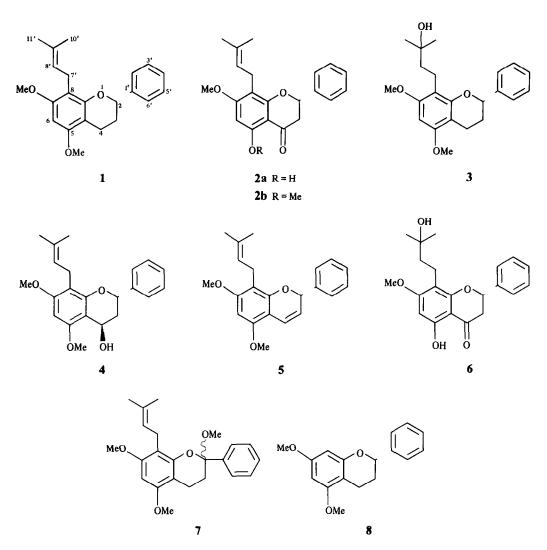


Table 1 ¹HNMR data* of flavans 4, 5, 6, 7 and 8

	4	5	6	7	8
H-2	5 15 dd (3, 12)	58 dd (3, 4)	5 38 dd (6, 12)	_	50 dd (4, 10)
Н-3	22 <i>m</i>	5 62 dd (4, 10)	295 m	22m	215 m
H-4	50 dd (3, 4)	6 79 dd (3, 10)		263 m	27 m
H-6	6 12 s	60 s	6 07 s	615 s	6 15 d (3)
H-8		_			6 08 d (3)
\$	7 36 br m	73 br m	7 4 br s	7 4 br m	7 37 br s
H-7'	3 29 d (7)	3 18 d (7)	265 m	34d (7)	_
H-8'	51 ob†	5 05 tq (7)	16 m	53 tq (7)	
H-10'	1 65 s	1 63 s	1 2 s	1 70 s	
H-11'	1 63 s	1 57 s	12s	1 64 s	
-ОМе	3 86 s	3 77 s	3 84 s	3 83 s	3 85 s
	3 83 s			3 80 s	375 s
				3 05 s	
-OH		_	12 05 s		_
			1 70 s		

*Run at 80 MHz in CDCl₃ with TMS as internal standard Values are in ppm (δ) Values in parentheses are coupling constants in Hz

 $\dagger ob =$ signal obscured

singlet at $\delta 3\,05$ The mass spectrum of 7 supported the proposed structure, it showed a molecular ion peak at m/z 368 and other significant peaks at m/z 337 [M – OMe]⁺, 234 [A₁]⁺, 219 [A₁ – Me]⁺

Tephrowatsin E (8), $C_{17}H_{18}O_3$ (M⁺ 270), was another flavan which was also similar to the flavan 1 It differs from 1 by the absence of the prenyl side chain at C-8 The ¹H NMR spectrum of 8 showed the following differences from that of 1 The prenyl group signals were missing and instead an extra aromatic proton doublet appeared as part of an AB system metacoupled (J = 3 Hz) Hence the AB system must be due to H-8 and H-6 protons The mass spectrum of tephrowatsin E (8) supported the proposed structure 8, since the molecular ion peak was observed at m/z 270 and other peak at m/z 166 $[A_1]^+$, 104 $[B_1]^+$ derived from the retro-Diels-Alder fragmentation

EXPERIMENTAL

Mps were determined on a Kofler block and are uncorr

Tephrowia watsoniana was collected in Guerrero, México, ca 20 km W of Tlapa, March 1982 A voucher is on deposit at the Herbarium of Instituto de Biología (UNAM), México

The air-dried plant material, leaves and flowers (866 g) were extracted with boiling petrol (101) and then $\times 2$ with CHCl₃ (101) and the solvent removed *in vacuo* The petrol extract (15 g) was percolated on a column packed with 60 g of Tonsil optimum extra (supplied by Tonsil Mexicana) and eluted with petrol and mixtures of petrol-CHCl₃ (1 1), CHCl₃ and CHCl₃-Me₂CO (2 1) From the fraction eluted with petrol a mixture of sitosterol and stigmasterol, 5,7-dimethoxy-8-prenylflavan (1) (617 mg), 5hydroxy-7-methoxy-8-prenylflavanone (2a) (235 mg) and nitenin (3) (9 mg) were obtained Fractions eluted with petrol-CHCl₃ (1 1) and CHCl₃ (3 g) were combined and rechromatographed over silica gel (30 g) affording tephrowatsin C (6) (15 mg) and tephrowatsin E (8) (7 mg) Rechromatography of the later fractions eluted with CHCl₃-Me₂CO (2 1) afforded tephrowatsin D (7) (5 mg)

The CHCl₃ extract (133 g) was chromatographed over 13 kg silica gel using petrol-CHCl₃ and mixtures of CHCl₃-Me₂CO as eluants From the fractions eluted with petrol-CHCl₃ tephrowatsin A (4) (80 mg) and tephrowatsin B (5) (50 mg) were obtained

Tephrowatsin A (4), $C_{22}H_{26}O_4$, colourless oil, $[\alpha]_D - 433^{\circ}$ (CHCl₃, $c \, 045$) UV $\lambda_{\text{max}H}^{\text{med H}}$ nm (ϵ) 209 (57998), 273 (1309) IR $v_{\text{max}}^{\text{lim}}$ cm⁻¹ 3400, 1610, 1500 EIMS (probe) 70 eV, m/z (rel int) 354 [M]⁺ (5), 336 [M - H₂O]⁺ (37), 245 [M - H₂O - C₇H₇]⁺ (95), 91 [C₇H₇]⁺ (100)

Tephrowatsin B (5), $C_{22}H_{24}\bar{O}_3$, colourless oil, UV λ_{max}^{MeOH} nm (ϵ) 208 (3500), 245 (1325), 295 (840) IR v_{max}^{film} cm⁻¹ 1680, 1610, 1500 EIMS (probe) 75 eV, m/z (rel int) 336 [M]⁺ (40), 321 [M - Me]⁺ (40), 281 [M - C₄H₇]⁺ (10), 105 [C₇H₅O]⁺ (100) Tephrowatsin C (6), $C_{21}H_{24}O_5$ colourless needles, mp 72-74°,

 $[\alpha]_{\rm D} = 5109 \text{ (CHCl}_3, c \ 0 \ 182) \text{ UV} \lambda_{\rm max}^{\rm MeOH} \text{ nm}$ (ε) 210 (31 600),

290 (19093), 339 (4236) IR $v_{\text{max}}^{\text{im}}$ cm⁻¹ 3450, 1640, 1590, 1500 EIMS (probe) 70 eV, m/z (rel int) 356 [M]⁺ (18), 338 [M - H₂O]⁺ (20), 283 [M - C₄H₉O]⁺ (34), 179 [C₉H₇O₄]⁺ (100), 104 [C₈H₈]⁺ (18), 91 [C₇H₇]⁺ (14)

(100), $104 [C_8H_8]^+$ (18), $91 [C_7H_7]^+$ (14) Tephrowatsın D (7), $C_{23}H_{28}O_4$, colourless oil, IR $v_{max}^{fim} cm^{-1}$ 1605, 1500 UV λ_{max}^{MeOH} nm (ɛ) 206 (31 542), 270 (932), 276 (943) EIMS (probe 70 eV, m/z (rel int) 368 [M]⁺ (73), 337 [M - OMe]⁺ (28), 313 [M - C_4H_7]⁺ (9), 219 [C_{13}H_{15}O_3]⁺ (100), 234 [C_9H_{10}O]⁺ (24), 91 [C_7H_7]⁺ (15)

Tephrowatsın E (8), $C_{17}H_{18}O_3$, colourless oil IR $\nu_{max}^{flm}cm^{-1}$ 1600, 1500 UV λ_{meo}^{MeoH} nm (ɛ) 207 (20 782), 257 (485), 263 (478), 267 (491) EIMS (probe) 70 eV, m/z (rel int) 270 [M]⁺ (100), 239 [M - OMe]⁺ (10), 166 [C₉H₁₀O₃]⁺ (78), 138 [C₈H₁₀O₂]⁺ (34), 104 [C₈H₈]⁺ (10), 91 [C₇H₇]⁺ (12)

Oxidation of tephrowatsin A (4) A soln of 4 (60 mg) in the minimum volume of pyridine was triturated with chromic anhydride (100 mg) in pyridine (1 ml) for 2 hr The mixture was diluted with water and extracted with CHCl₃ to give **2b** (12 mg), mp 85–86° IR $\nu_{\rm min}^{\rm film}$ 1660, 1600, 1570 UV $\lambda_{\rm max}^{\rm MeOH}$ nm (e) 205 (34 600), 236 (17 104), 282 (18 285), 320 (5622)

Dehydration of tephrowatsin A (4) Dry MgSO₄ (200 mg) was added to a soln of 20 mg 2 in C₆H₆ and refluxed for 30 min, the reaction being monitored by TLC When the reaction was completed the MgSO₄ was filtered and the solvent evaporated yielding 7 mg of tephrowatsin A (5) after TLC purification

Dehydration of tephrowatsin C (6) Dry MgSO₄ (150 mg) was added to a soln of 6 in C₆H₆ and refluxed for 15 min, the reaction being monitored by TLC When the reaction was completed the MgSO₄ was filtered and the solvent evaporated yielding 6 mg of 7-methylglabranin (2a), mp 128–129° (lit 123–125°) [6] identified by its IR, ¹H NMR and mass spectra and comparison with authentic sample

Acknowledgements—We are very grateful to Mr O Tellez of Instituto de Biología (UNAM) for collecting and identifying the plant material Thanks are also due to Messrs J Cárdenas, H Bojorquez, L Velasco, L Villena, A Toscano for ¹HNMR, IR, UV and mass spectra

REFERENCES

- 1 Waterman, P A and Khalid, A S (1980) Phytochemistry 19, 1909
- 2 Sinha, B Natu, A A and Nanavati, D D (1982) Phytochemistry 21, 1468
- 3 Gómez, F, Quijano, L, García, G, Calderón, J S and Ríos, T (1983) Phytochemistry 22, 1305
- 4 Gómez, F, Quijano, L, Calderón, J S, Crúz, O and Ríos, T (1984) Chem Ind 632
- 5 Jayaraman, I, Ghanim, A and Khan, N A (1980) Phytochemistry 19, 1267
- 6 Whalley, W B (1962) in *The Chemistry of Flavonoid* Compounds (Geissman, T A, ed), p 441 Pergamon Press, New York