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ABSTRACT 

Michael reaction of l-O-acetyl-4,6-O-benzylidene-2,3-dideoxy-3-C-nitro-a-D-eryrhro-hex-2-enopy- 
ranose with 2,4qentanedione afforded two cyclized products, together with adducts having the a-D-&O 

and a-D-manno configurations. The dihydrofuran structures of the cyclized products were determined from 
spectral data, supported by semi-empirical molecular orbital (AM 1) calculations. Cyclization occurred from 
the manno adduct through nucleophilic expulsion of the anomeric acetoxyl group by an enolate generated 
from the C-2 substituent. Such a proposed intramolecular SNZ mechanism was supported by a similar 
reaction with dibenzoylmethane. 

INTRODUCTION 

Remarkable solvent effects have been observed on the direction of approach of a 
nucleophile, generated from 2,4-pentanedione and sodium hydroxide, to methyl 4,6-0- 
benzylidene-2,3-dideoxy-3-C-nitro-B_D-erythro-hex-2-enopyranoside. In 1 ,Cdioxane 
the nucleophile attacks preferentially from the equatorial side of C-2 to give the 

a-D-gluco product, whereas in acetone or in a heterogeneous system (benzen&.2M 
sodium hydroxide in the presence of a phase-transfer catalyst) it attacks from the axial 
side to give the a-D-manno product’. 

To study whether or not similar solvent effects occur with other Michael accept- 
ors, l-O-acetyl-4,6-O-benzylidene-2,3-dideoxy-3-C-nitro-a-~-ery?hro-hex-Zenopyra- 
nose (1) was treated with 2,4-pentanedione. 

RESULTS AND DISCUSSION 

The 3-nitro-2-enopyranose 1, treated with 2,4_pentanedione in 1 ,Cdioxane in the 
presence of 0.2~ sodium hydroxide for 2.5 h, afforded 24% of a cyclized product 6, 
along with the cr-D-gfuco adduct 4 (33%) and unreacted starting material 1 (19%). 
Formation of the gluco adduct 4 in 1,4-dioxane was expected from the results observed 
in a similar reaction with the l-O-methyl analogue of 1. The yield of cyclized product 6 

OOO&6215/91/$03.50 @ 1991- Elsevier Science Publishers B.V. 
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was raised to 68% by treatment of 1 in benzene-O.2u sodium hydroxide for 20 h at room 

temperature in the presence of tributylhexadecylphosphonium bromide as a phase- 

transfer catalyst. However, under milder, heterogeneous conditions (0.05~ sodium 

hydroxide, 7.5 h for reaction time), another cyclized product (5, 18%) was isolated 

along with the a-D-manno adduct 2 (11 “A) and the starting nitro alkene 1(37%). For 2 

and 4, respectively, the or-D-manno and cr-D-gluco configurations having the 4C, confor- 

mation were assigned from the values of the coupling constants. Elemental analyses of 

the cyclized products 5 and 6 agreed with the formula, C,,HI,NO,, which was confirmed 

by the molecular-ion peak at m/z 361.1.r. spectra suggested the presence of a&alkoxy- 

c+unsaturated carbonyl group and the absence of ester and saturated carbonyl groups. 

In the ‘H-n.m.r. spectrum (CDCI,), the H-l and H-3 signals of 5 were observed 

respectively at 6 5.83 as a doublet having J,,, 6.3 Hz, and 6 5.07 as a doubled doublet 

having .J2,3 8.4 and .T3,,, 10.4 Hz. The corresponding signals of 6 were observed at 6 6.11 as 

a doublet having .I,,, 5.3 Hz and 6 6.19 as a double doublet having J,,, 1.4 and J3,4 5.0 Hz; 

the H-3 signals appeared at exceptionally low field’. The assignment of the H-3 signals 

for 6 was confirmed by comparison with the sepctrum of its C-3 deuterated derivative. 

Except for C-2, the pyranose ring-carbon atoms of 6 resonate at higher fields than the 

corresponding carbon atoms of 5. The difference for C-5 amounts to 6.4 p.p.m_, 

suggesting that C-5 of 6 is sterically compressed3 compared with C-5 in 5. These physical 

data indicate that 5 and 6 incorporate a dihydrofuran ring at C-l and C-2 of the 

pyranose ring. The signals of H-2 and H-5 were examined in n.0.e. difference spectra 
with irradiation of the H-l signal, and indicated the B-D and not the a-D-structure for 6, 

PhT-;, 

AC&I-I OAc 

4 

6AC 

2 R = CHAc, 

3 R = CH& 

5 RI = NO,, R’ = H, R3 = Me. R4 = AC 

6 R’ = H. R2 = NOz, R3 = Me. R4 = AC 

7 Ri = H, R2 = NO,, R3 = C&I,. R’ = 62 
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because H-l, H-2, and H-5 are sterically close. The H-4 signal was observed by 

irradiation of the H-3 signal, and suggested the altro configuration, and this is support- 
ed by the coupling constants. Two conformers are possible for the acetyl moiety, one 
having the carbonyl oxygen atom close to the carbon+arbon double bond and the other 
having the oxygen atom remote. In the latter, hydrogen bonding through a six- 
membered ring is possible between H-3 (acidic because of the nitro group) and the 
carbonyl oxygen atom. If this is the case, the appearance of H-3 at exceptionally low 
field is understandable. However, the former (close to the double bond) is the more 
likely from the n.0.e. difference spectrum. The H-2 and H-3 signals were not enhanced 
upon irradiation of the doublet methyl signals at 6 2.36, but were enhanced weakly upon 

irradiation of the singlet methyl signal at 6 2.40. These results also suggest that the 
doublet methyl signals may be assigned to the group attached to C-S, which is coupled 
by H-2 through homoallylic coupling (J2,Mc 2.0 Hz). The methyl signals at 6 16.1 and 

30.0 in the 13C-n.m.r. spectrum were correlated with the doublet and singlet methyl 
signals in the ‘H-n.m.r. spectrum (‘H-‘3C-COSY). Although the two methyl signals of 5 
were almost completely overlapped in cloroform-d, they were separated in benzene-d,. 

When one of the methyl groups was irradiated, the other one was observed in the n.0.e. 
difference spectrum and uice versa, indicating that the carbonyl oxygen atom of 5 is 
remote from the double bond. These structural assignments are in good agreement with 
the results obtained by molecular-orbital calculations (AM1 method4) as described 
later. The nitro group of 6 is exo-disposed, whereas that of 5 is in the sterically crowded 
endo position, and therefore 6 should be thermodynamically more stable than 5. In fact, 
under the basic conditions, the cyclized product 5 was readily epimerized to give the 
other cyclized product 6. Conversion of 6 into 5, however, did not occur under the same 
conditions. Furthermore, treatment of 5 and 6, respectively, with 0.2~ sodium hydrox- 
ide-d(in D,O) in acetone-d, afforded exclusively the 3-deuterio derivative of 6, revealing 

that the protons at C-3 of both compounds were acidic enough to be abstracted. Thus 
compound 5 should be formed as a preliminary product, which should then be epimer- 
ized to the thermodynamically more stable 3-epimer 6. This hypothesis was chemically 
confirmed as follows. The reaction of the a-D-manno adduct 2 with 0.2~ sodium 

hydroxide-d in acetone-d, was monitored by n.m.r. spectroscopy. Within 3 min, 2 had 
mostly disappeared and 5 was detected as the major product. The reaction was 
quenched with a cation-exchange resin and the ‘H-n.m.r. spectrum of 5, isolated as the 
major product, revealed that its H-3 was not replaced by deuterium, indicating that 
epimerization of the nitro group did not occur during the formation of 5, compound 5 
should therefore have the manno configuration. When the reaction time was extended to 
26 min, the other cyclized product (6) preponderated. The ‘H-n.m.r. spectrum of 6 as 
isolated showed that the H-3 signal was completely absent. In contrast, similar treat- 
ment of the a-D-gluco adduct 4 gave no evidence for formation of the cyclized products 5 
and 6 even after 40 min, revealing that 4 was not a precursor to the cyclized products. 
Although the 3 position of the recovered 4 was completely deuterated, its H-2‘ (diacetyl- 
methine) proton was not replaced by deuterium. 

In order to obtain further structural information semi-empirical molecular orbi- 
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tal (AMl) calculations were performed on 4,6-O-methylene derivatives used as model 
compounds for 5 and 6. Two conformers of the acetyl moiety, in which the carbonyl 
group is close to the double bond in one conformer (5~ and 6~) and remote in the other 
(Sr and 6r), were calculated for the /3-D-manno and P-D-altro isomers with full optimiza- 
tion (bond length, bond angle, and dihedral angle). The optimized structure adopted the 
half-chair conformation and the stabilities decreased through to the sequence: 6c > 6r 
> 5r > 5c. The heats of formation thus calculated were in good agreement with the 

experimental results. In these conformers, the altro isomers (6~ and 6r) are always more 
stable than the manno isomers (5r and 5~). As suggested by the n.0.e. difference 
spectrum, the present calculation shows that 6c is more stable than 6r by 0.8 kcal/mol. 
Furthermore, calculation reveals that the methyl group of the acetyl moiety, which 
deviates by 24” from the plane of the double bond, is close to H-2. Also as indicated by 
the n.0.e. difference spectrum, the calculation reveals that 5r is more stable than 5c by 
1.5 kcal/mol. 

5c R’ = NO,. R2 = H 

6c R’ = H, R* = NO, 

5r R’ = NO,. R2 = H 

6r R’ = H, R2 = NO2 

The following two mechanisms for formation of 5 were taken into the consid- 
eration: (a) an enolate ion directly attacks the anomeric carbon atom from the rear side 
of the acetoxyl group (SN~ mechanism) or (6) after anomerization, a carbanion attacks 
the carbonyl carbon atom of the acetoxyl moiety, with subsequent deacetylation and 
dehydroxylation to give 5. Although an anomeric acetoxyl group is employed as a 
leaving group under acidic conditions, it is seldom used under neutral or basic condi- 
tions because of its poor leaving-group ability. Despite these facts, cyclization of 2 
occurred to some extent even during isolation of 2 by fractional crystallization from 
2-propanol. We therefore, first excluded the possibility of route (a) and anomerization 
in route (6); and thus 5 and 6 were initially assigned incorrectly to the a-D-manno and 
a-D-altro configurations having the lV4B conformations, respectively, without the n.0.e. 
difference spectra data *. If the former mechanism operates, the methyl group at C-5’ 
arises from the diacetylmethyl moiety, whereas if the latter one operates it does so from 
the anomeric acetoxyl group. In order to clarify the mechanism, therefore, a reaction of 
1 with dibenzoylmethane was performed under conditions similar to those employed for 

* We thank one of referees who pointed out the possibility of the@-munno and ~-D-U&r0 structure for 5 and 
6, respectively. According to this suggestion we reinvestigated and revised our.structural assignments. 
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the preparation of 6. Compound 7, isolated as the major product, has the b-D-altro 

configuration and has phenyl and benzoyl groups at C-5’ and C-4’, respectively. Thus it 
is concluded that the cyclization occurred through the SN~ mechanism [route (a)]. It is 
noteworthy that, even under such mild conditions, the anomeric acetoxyl group acts as 
an ~rrellent hvinf3 rrmim. 

If the enolate is formed from the 2-C-acetonyl moiety of 2-C-acetonyl- 1 -O-acetyl- 
4,6-0-benzylidene-2,3-dideoxy-3-C-nitro-~-D-mannopyranose (3), a similar SN~ reac- 
tion should occur to give the corresponding cyclized product. However, similar treat- 
ment of 3, prepared from 1 and acetone in the presence of NaOH, under the same 
conditions employed for conversion of 2 into 6 resulted in the recovery of the 3-deuterio 
derivative of 3. 

Ph 

route (a) 

AC 

5 

Ph 

5 6 
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EXPERIMENTAL 

General methods. - Melting points are uncorrected. Optical rotations were 
determined with a Horiba High Sensitivity Polarimeter (SEPA-200). ‘H-N.m.r. spectra 
were recorded at 200 MHz with a Jeol spectrometer (JNM-FXZOO), 270 MHz (JNM- 
EX270), or 500 MHz (JNM-GSXSOO) in CDCl, with Me,Si as the internal standard. 
N.0.e. Difference spectra of 5 (CDCl,) and 6 (C,Dd were recorded at 500 MHz. The 
‘H-‘3C-COSY experiments were performed with the 270-MHz spectromter. 1.r. spectra 

were recorded for KBr pellets. Mass spectra (e.i.) were obtained with a Hitachi M-70 
mass spectrometer. Calculations were performed by the AM1 method included in the 
MOPAC program4 with full optimization by the FACOM M-360 AP computer at the 
Education Center for Information Processing of Yokohama City University. Solutions 
were dried over MgSO, and evaporated under diminished pressure. Column chroma- 
tography was conducted on silica gel (Wakogel C-300). The catalyst refers to tributyl- 
hexadecylphosphonium bromide. 

I- 0-2-C (I-acetyl- 2- oxopropyl) - 4,6-O- benzylidene- 2,3-dideoxy-3-C-nitro-a-D- 

mannopyranose (2) and 4-acetyl-2,3-dihydro-S-methyZ-(4,6-0-benzylidene-2,3-dideoxy- 

3-C-nitro-/3-D-mannopyranosido)[l,2-b]f wan (5)- A mixture of 1 (ref. 5,145 mg, 0.45 
mmol), 2,4-pentanedione (61 mg, 0.61 mmol), the catalyst (9 mg) 0.05~ NaOH (0.45 
mL), and benzene (13.5 mL) was stirred for 7.5 h at room temperature. After dilution 
with benzene, the organic layer was washed with dilute HCI and water, dried, and 
evaporated. The residue was chromatographed with 15: 1 (v/v) benzene-EtOAc, to give 
successively 53 mg (37%) of starting material 1,19 mg (10%) of 5, and 89 mg of 2, which 
was contaminated with 5. The last fraction was recrystallized from EtOH to give 21 mg 
(11%) of 2 and the filtrate from this was evaporated. The ‘H-n.m.r. spectrum of the 
residue suggested partial conversion of 2 into 5 during recrystallization. Thus additional 
amounts of 5 (total 30 mg, 18%) were isolated from the residue by recrystallization from 
EtOH. Physical data for 2: m-p. 177.5-178.5”, [a]% - 182” (c 1, CHCl,); v,,,,, 1765, 1738, 
1700 (C = 0), and 1560 cm-’ (NO,). 

Anal. Calc. for C,H,,NO,: C, 57.00; H, 5.50; N, 3.32. Found: C, 56.87; H, 5.32; N, 
3.49. 

Physical data for 5: m.p. 179.5-180.5”, [a$ -t-62” (c 1, acetone); vmax 1645, 1615 
(C = C-CO), and 1560cm-’ (NO,); m/z 361 (M+); ‘H-n.m.r. (500 MHz, C,D,) 6 5.02 (d, 
1 H,Jlt6.1 Hz,H-1),3.53(m, 1 H,H-2),4.67(dd, 1 H,J,,,8.3,J,,4 10.5Hz,H-3),4.39 
(dd, 1 H, J4,J 10.0 Hz, H-4), 3.11 (dt, 1 H, J5,6. 10.0, J5.& 5.0 Hz, H-5), 3.40 (t, 1 H, Jti,& 

10.5 Hz, H-6a), 4.44 (dd, 1 H, H-6e), 5.13 (s, 1 H, PhCH), 1.95 (s, 3 H, AC), and 1.72 (d, 3 

H, J2,Me 1.3 Hz, Me); 13C-n.m.r. (67.8 MHz, CDCI,, CDCI, as internal standard) 6 102.3 
(C- 1, sugar numbering, see formula 5), 43.9 (C-2), 84.1 (C-3), 74.7 (C-4), 66.5 (C-5), 68.9 
(C-6), 101.7 (PhCH), 114.3 (C-5’ or C-4’), 165.5 (C-4’ or C-5’), 193.2 (C =0), 15.3 (Me), 
29.1 (AC), 136.1 (ipso), 128.3 (ortho or meta), 126.0 (meta or ortho), and 129.3 (para). 

Anal.Calc.forC,,H,,NO,:C,59.83;H,5.30;N,3.88.Found:C,59.89;H,5.30;N, 
3.72. 
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TABLE III 

Heat of formation of model compounds” for the cyclized products 

127 

Compounds Heat of formation (kcallmol) 

fl-D-ah-0 isomer 6c - 185.2 
p-D-ah0 isomer 6r - 184.4 
b-D-manno isomer 5r - 179.6 
8-wah0 isomer 5e - 178.1 

a Calculated by the AM 1 method with full optimization. 

zoylmethane (1010 mg, 4.51 mmol), the catalyst (90 mg), 0.2~ NaOH (35 mL), and 
benzene (60 mL) was stirred for 26 h at room temperature. After dilution with benzene, 

the organic layer was washed with aq. NaCl (twice), dried, and evaporated. The 
resulting residue was chromatographed with PhMe and then 20: 1 (v/v) PhMe-EtOAc, 
to give 560 mg (82%) of 7. An analytical sample was prepared by recrystallization from 

ether-petroleum ether; m.p. 86--W, [ar]: 170.5” (c 0.6, CHCl,); v,,,, 1680,1615 (C = 0), 
and 1555 cm-’ (NO,). 

Anal. Calc. for C,,H,,NO,: C, 69.27; H, 4.78; N, 2.89. Found: C, 69.28; H, 4.86; N, 
2.90. 

2-C-Acetonyl-l-O-acetyl-4,6-O-benzylidene-2,3-dideoxy-3-C-nitro-c-~-manno- 
pyranose (3). -To a solution of l(l60 mg, 0.5 mmol) in acetone (6 mL) was added 0.25 

mL of M NaOH. The mixture was stirred for 6.5 h at room temperature and deionized 
with cation-exchange resin. After removal of the resin, the filtrate was evaporated and 
the residue was chromatographed with 15: 1 (v/v) benzene-EtOAc, to give 47 mg (25%) 

of 3. An analytical sample was recrystalhzed from EtOH; m.p. 173.5174.5”, [a]: + 38” 
(c 0.8, acetone); v, 1750, 1710, (C=O), and 1555 cm-’ (NO,). 

Anal. Calc. for C,,H,,NO,: C, 56.99; H, 5.58; N, 3.69. Found: C, 56.79; H, 5.55; N, 
3.59. 

Conversion of 2 into 5 and/or 6. - To a solution of 2 (13 mg) in acetone-d, (0.3 
mL) in an n.m.r. sample-tube was added 0.15 mL of 0.2M NaOD (in D,O). After 3 min, 

the mixture was poured into acetone containing the cation-exchange resin. After 
removal of the resin, the filtrate was evaporated to give a solid residue whose ‘H-n.m.r. 

spectrum showed it to be a 1:3.6:1 mixture of 2, 5 and 6. Crystallization from EtOH 
afforded 4 mg of 5, whose ‘H-n.m.r. spectrum indicated that deuteration at C-3 had not 
occurred. 

Similar treatment of 2 for 26 min gave the C-3 deuterated derivative of 6, together 
with a trace of 5. 

Similar treatment of the gluco isomer 4 (12.6 mg) resulted in the recovery of 4, 
even after 40 min. The C-3 position of recovered 4 was completely deuterated, whereas 
the C-2’ position was not, as judged from the ‘H-n.m.r. spectrum. 

Conversion of5 into 6. - To a solution of 5 (11 mg) in acetone-d, (0.4 mL) in an 
n.m.r. sample-tube was added 0.1 mL of 0.2w NaOD and the reaction was monitored by 
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n.m.r. spectroscopy. After 140 min, the mixture was poured into acetone containing 

cation-exchange resin. After removal of the resin, the filtrate was evaporated to a 
residue whose ‘H-n.m.r. spectrum showed that 5 was almost completely converted into 

6 and that both methyl groups of I-acetyl-Zoxopropyl moiety and C-3 position were 

deuterated. 
The ‘H-n.m.r. spectrum of the residue, obtained by the same treatment of 6 as 

already described, was almost the same as that obtained from 5, indicating that H-3 of 6 

was acidic enough for abstraction. 

Attempted conversion of 3 into 5 and/or 6. - To a solution of 3 (10 mg) in 
acetone-d, (0.3 mL) in an n.m.r. sample-tube was added 0.2~ NaOD (0.15 mL). After 45 
min, the mixture was processed similarly. The ‘H-n.m.r. spectrum of the residue 
revealed the recovery of 3 (H-3, but not the acetonyl group, was almost completely 

deuterated). 
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