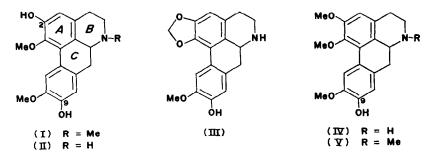
APORPHINE ALKALOIDS OF LITSEA SEBIFERA, L. WIGHTIANA AND ACTINODAPHNE OBOVATA*

HEMA UPRETY, D. S. BHAKUNI and M. M. DHAR

Central Drug Research Institute, Lucknow, India


(Received 20 April 1972. Accepted 1 May 1972)

Key Word Index—Litsea sebifera; Litsea wightiana; Actinodaphne obovata; Lauraceae; boldine; norboldine; actinodaphnine; laurotetanine; N-methyllaurotetanine.

Abstract—Boldine, laurotetanine, N-methyllaurotetanine, and actinodaphnine from Litsea sebifera pers., boldine and norboldine from L. wightiana Hook. f. and laurotetanine, N- methyllaurotetanine and actinodaphnine from Actinodaphne obovata Bl. have been isolated.

CURRENT interest in aporphine alkaloids has been on their biosynthesis^{1,2} and biological activity.^{3,4} A good source of different types of these alkaloids is, therefore, important for further biosynthetic and biological studies. *Litsea sebifera* Pers. Lauraceae. *Occurrence*. Western Himalayas. *Source*. Lansdown, U.P., India.

Leaves and stem. The aporphine bases boldine (I), actinodaphnine (III), laurotetanine (IV) and N-methyllaurotetanine (V) are found to be present in the leaves and stem of the plant.

Litsea wightiana Hook. f. Lauraceae, Occurrence. Nilghiri and Travancore hills 6000-8000 ft. Source. Ooty, Tamil Nadu, India.

Stem bark: The aporphines boldine and norboldine (II) were isolated from the alkaloidal mixture of the stem bark of the plant.

Actinodaphne obovata Bl. Occurrence. Eastern Himalayas and Assam 1000-3000 ft. Source. Sibsagar, Assam, India.

* Communication No. 1726 from Central Drug Research Institute, Lucknow.

¹ A. R. BATTERSBY, J. L. MCHUGH, J. STAUNTON and M. TODD, *Chem. Commun.* 985 (1971); A. R. BATTERSBY, P. BOHLER, M. H. G. MUNRO and R. RAMAGE, *Chem. Commun.* 1066 (1969).

² G. BLASCHKE, Arch. Pharm. 301, 432 (1968); idem. ibid. 303, 358 (1970).

³ H. KRETMAIR, Pharmazie 7, 507 (1952); Chem. Abst. 47, 11558 (1953).

⁴ N. REIMAIR, *Flurmuzie* 7, 507 (1952), Chem. Aust. 47, 11556 (1955).

⁴ V. PETERS, J. L. HARTWELL, A. J. DALTON and M. J. SHEAR, *Cancer Res.* 6, 490 (1946); *Chem. Abst.* 42, 5540 (1948).

Leaves and stem. The aporphines laurotetanine, N-methyllaurotetanine and actinodaphnine are found to occur in the leaves and stem of the plant. The aporphine alkaloids reported above were isolated from the basic fraction of the ethanolic extractive of the plant material. The alkaloidal mixtures are resolved by chromatography on neutral Al_2O_3 , SiO_2 and preparative TLC.

No.	Alkaloids	6	1	2	9	10	H_3	H_8	H11
1	II	······································	6.22			6.03	3.39	3.02	1.80
2	III*		6.64			6.38	3.48	3.39	2.37
3	Ι		6.39			6.09	3.40	3.10	2.02
4	IV		6.32	6.05		6.02	3-38	3-00	2.20
5	v	7.48	6.39	6.15		6.11	3.43	3.19	2.00

TABLE 1. NMR (τ) data on aporphines

* Spectrum in TFA. Aliphatic protons attached to ring B and C gave complex pattern between τ 6.2 and 7.8.

NMR and MS data of the isolated bases are recorded in Tables 1 and 2 respectively. The relative positions of the hydroxyl and methoxyl groups in these bases are established by base catalysed exchange experiments.⁵ The norbases are converted into the corresponding *N*-methyl derivatives by treatment with HCHO followed by NaBH₄⁶ and *O*-methyl derivatives are prepared by treating the bases in a MeOH with ethereal CH_2N_2 .

TABLE 2. MASS SPECTRA DATA ON APORPHINES

Alkaloids		M +	M2+	M -1	M -15	M-17	M-29	M-31	M-43	M - 58	M-74
I II III	$\begin{array}{c} (C_{19}H_{21}O_4N) \\ (C_{18}H_{19}O_4N) \\ (C_{18}H_{17}O_4N) \end{array}$	327 313 311	163 · 5 156 · 5 155 · 5	326 312 310	312 298 296	310 296 294	384	296 282 M - 30	284	269 255 253	253 239 237
IV V	$(C_{19}H_{21}O_4N)$ $(C_{20}H_{23}O_4N)$	327 341	163∙5 170∙5	326 340	312 326	310 324	298	281 296 310	298	269 283	253 267

EXPERIMENTAL

IR, UV and 60 Mcs NMR spectra were recorded in KBr, EtOH and CDCl₃ respectively with TMS as internal standard. Silica gel-G was used for TLC, with CHCl₃-MeOH (19:1) and (9:1) and C_6H_6 -Et₂NH-EtOAc (7:1:2).

Isolation of bases. Air dried plant materials were extracted with EtOH. The solvent was removed and the residues were extracted with 5% HCl. The acidic solutions were defatted with light petroleum, basified with Na₂CO₃ and the liberated bases extracted with CHCl₃, washed (H₂O), dried and the solvent removed to give the alkaloidal mixtures.

Litsea sebifera. The alkaloidal mixture (2.8 g) was chromatographed on neutral Al₂O₃ (100 g). The column was eluted successively with C₆H₆, C₆H₆-CHCl₃ (1:1), CHCl₃, CHCl₃-MeOH (99:1), (49:1), (19:1), (10:1) and followed by TLC.

Boldine. The CHCl₃ and CHCl₃-MeOH (99:2) eluates yielded boldine (120 mg), m.p. 160-161°; $[a]_D$ 106° (CHCl₃). UV λ_{max} 220, 282 and 304 nm. The base in MeOH (3 ml) was treated with CH₂N₂ to give glaucine m.p. 117°; λ_{max} 218, 282 and 304 nm. A mixture of base (80 mg), K-t-butoxide (100 mg) and

⁵ D. S. BHAKUNI, S. TEWARI and M. M. DHAR, Phytochem. 11, 1149 (1972).

⁶ M. TOMITA and M. KOZUKA, J. Pharm. Soc. Japan 85, 77 (1965).

 D_2O (0.5 ml) were heated in a scaled tube at 100° under N_2 for 100 hr. The resulting mixture was worked up as usual. The NMR spectrum of the deuterated compound was identical with that of boldine except that the signals for aromatic protons at position-3 and 8 had almost disappeared. The identity of the base with boldine was established by comparison with an authentic sample (m.p., m.m.p., IR, UV and TLC).

N-Methyllaurotetanine. The CHCl₃-MeOH (49:1) eluate afforded the base (100 mg). It was homogenous on TLC but could not be crystallised, λ_{max} 215, 283 and 304 nm, Base, HBr, m.p. 220-222°. The base in MeOH (2 ml) was treated with CH₂N₂ to give glaucine, m.p. 118°. The NMR of the deuterated compound was identical with that of the parent base except the signal at τ 3·19 for an aromatic proton at position-8 which had considerably reduced in intensity (85%). The identity of the base with N-methyllaurotetanine was confirmed by comparison with an authentic sample (TLC, IR, NMR and MS).

Laurotetanine. The CHCl₃-MeOH (19:1) eluate gave the base (110 mg), as an amorphous powder which was homogenous on TLC, λ_{max} 220, 281 and 305 nm. A mixture of the base (80 mg), MeOH (20 ml) and HCHO (2 ml) was treated with NaBH₄. The resulting mixture was worked up to give *N*-methyllaurotetanine (TLC, IR, NMR and MS).

Actinodaphnine. The CHCl₃-MeOH (19:1) eluate when further subjected to preparative TLC (SiO₂) gave the base (96 mg) m.p. 204-206°. [a]_D +28° (CHCl₃); λ_{max} 221, 285 and 308 nm. The base was treated with HCHO and (HCOOH) to give N-methyllaurotetanine (TLC, UV, NMR and MS).

L. wightiana. The alkaloidal mixture was chromatographed on neutral Al₂O₃. Elution with CHCl₃-MeOH (99:1) gave boldine (m.p., m.m.p., [a]_D, IR, UV, NMR and MS). The CHCl₃-MeOH (19:1) eluate gave norboldine (250 mg) as an amorphous base λ_{max} 220, 284 and 308 nm^o. Base picrate, m.p. 210^o. Treatment of the base (80 mg) with HCHO (2 ml) and HCOOH (3 ml) yielded boldine (m.p. TLC, IR and NMR).

Actinodaphne obovata. The alkaloidal mixture was chromatographed on neutral Al_2O_3 . The CHCl₃-MeOH (49:1) and (19:1) eluates afforded N-methyllaurotetanine (TLC, IR, NMR and MS) and laurotetanine (TLC, UV, IR and NMR) respectively.