

Tetrahedron Letters, Vol. 37, No. 43, pp. 7755-7756, 1996 Copyright © 1996 Elsevier Science Ltd Printed in Great Britain. All rights reserved .8 0040-4039/96 \$15.00 + 0.00

PII: S0040-4039(96)01769-8

Stereoselective Dimerization of α -Keto Amides Using Samarium Diiodide

Masayuki Yamashita,* Kazunori Okuyama, Ikuo Kawasaki, and Shunsaku Ohta

Kyoto Pharmaceutical University, Misasagi Nakauchicho 5, Yamashinaku, Kyoto 607, Japan

Abstract: α -Keto amides were dimerized in the presence of SmI₂ in THF to give substituted tartaric amides in moderate to good yields. Although the dimerization of the secondary keto amides did not proceed stereoselectively, racemic tartaric amides were produced exclusively in the case of the tertiary keto amides. Copyright © 1996 Elsevier Science Ltd

In view of its easy handling and the wide range of reactivities, samarium diiodide (SmI₂) has become an important one-electron reducing agent since the first applications to synthetic organic chemistry by Kagan and his co-workers in 1977¹ and many reactions of SmI₂ have been reported.² On the other hand, there are a few papers regarding the dimerization of α -keto acid derivatives,³ but these procedures are not satisfactory due to their complexity, low yield, or non-stereoselectivity. Furthermore, there is no report of the dimerization of α -keto amides. In this paper, we describe the reductive dimerization of α -keto amides (1) (Scheme 1).

When a solution of N-isopropylpyruvamide (1a) in THF was slowly added to a suspension of 3 equivalents of SmI2 in THF at room temperature, a racemic compound (2ra) and a meso compound (2ma) were obtained in 18% and 37% yields, respectively (Entry 1), and these products could be easily isolated by preparative TLC. The yields of 2ra and 2ma could not be improved by changing the reaction conditions. The stereochemistries of 2ra and 2ma were determined by X-ray crystal structure analyses.⁴ Other secondary pyruvamides (1b and 1c) were subjected to the same reaction conditions as described above, and the corresponding diastereomeric mixtures were obtained (Entries 2 and 3).

Next, we tried the reductive dimerization of tertiary pyruvamides (1d, 1e, and 1f). Although 1d gave only N,N-diphenyl lactamide in 57% yield (Entry 4), dimerization occurred in the case of 1e and 1f (Entries 5 and 6) to give only the racemates (2rd and 2re) in 59% and 94% yield, respectively (*vide infra*). Some N,N-diisopropyl α -keto amides (1g - 1j) were similarly dimerized to give the corresponding racemates (2rf - 2ri) in moderate to good yields (Entries 7 - 10). The stereochemistries of 2re, 2rh, and 2ri were determined by X-ray crystal structure analyses⁴, and 2rd, 2rf, and 2rg also should be racemates judging from analogous ¹H-NMR data.

Investigation of the reaction mechanism of the stereoselective dimerization and its applications is in progress.⁵

	Starting Material				
Entry		R	R ¹	R ²	Isolated Yield (%)
1	1a :	CH3-	(CH3)2CH-	H-	2ra : 18 ^{b)} , 2ma : 37 ^{c)}
2	1b :	CH3-	Ph-	H-	2rb : 41 ^{b,d)} , 2mb : 30 ^{c,d)}
3	1c :	CH3-	PhCH ₂ -	H-	2rc : 25 ^{b,d)} , 2mc : 34 ^{c,d)}
4	1d :	CH3-	Ph-	Ph-	_e)
5	1e :	CH3-	PhCH ₂ -	PhCH ₂ -	2rd : 59
6	1f :	CH3-	(CH3)2CH-	(CH3)2CH-	2re : 94
7	1g :	CH3CH2-	(CH3)2CH-	(CH3)2CH-	2rf : 90
8	1h :	CH3CH2CH2-	(CH3)2CH-	(CH3)2CH-	2rg : 64
9	1i :	PhCH ₂ CH ₂ -	(CH3)2CH-	(CH3)2CH-	2rh : 56
10	1j :	(CH3)3CCH2CH2-	(CH3)2CH-	(CH3)2CH-	2ri : 83

Table 1. Reductive Dimerization of α -Keto Amides (1)^{a)}

a) 0.5 mmol of 1 in THF (5 ml) was added slowly to 1.5 mmol of SmI₂ in THF (2 ml). b) More polar compound. c) Less polar compound. d) The stereochemistry was estimated on the basis of ¹H-NMR data. e) *N*,*N*-Diphenyl lactamide was obtained (57%).

REFERENCES AND NOTES

- Namy, J. L.; Girard, P.; Kagan, H. B. Nouv. J. Chim. 1977, 1, 5 7. Girard, P.; Namy, J. L.; Kagan, H. B. J. Am. Chem. Soc. 1980, 102, 2693 - 2698.
- For reviews : Kagan, H. B.; Namy, J. L. Tetrahedron, 1986, 42, 6573 6614. Inanaga, J. J. Synth. Org. Chem., Jpn. 1989, 47, 200 211. Kagan, H. B. New J. Chem. 1990, 14, 453 460. Soderquist, J. A. Aldrichimica Acta, 1991, 24, 15 23. Molander, G. A. Chem. Rew. 1992, 92, 29 68.
- Erlenmeyer, E. Ber. 1905, 38, 3119 3125. Schönberg, A.; Latif, N.; Moubasher, R.; Sina, A. J. Chem. Soc. 1951, 1364 1368. Juday, R. E. J. Org. Chem. 1958, 23, 1010 1012. Barker, S. A.; Brimacombe, J. S.; Spence, D. H. J. Chem. Soc. 1963, 5117 5122. Leermakers, P. A.; Vesley, G. F. J. Am. Chem. Soc. 1963, 85, 3776 3779. Katsaros, N.; Vrachnou-Astra, E.; Konstantatos, J.; Stassinopoulou, C. I. Tetrahedron Lett. 1979, 4319 4322. Negron-Mendoza, A.; Albarran, G. Radiat. Phys. Chem. 1990, 35, 469 472. Abe, K.; Takahashi, S.; Mori, N. Chem. Express, 1991, 6, 53 56. Markova, E. A.; Kolomiets, A. F.; Fokin, A. V. Izu. Akad. Nauk, Ser. Khim. 1992, 1408 1411.
- 4. **2ra** : $C_{12}H_{24}N_{2}O_4$: FW 260.33, triclinic, $P\overline{1}(#2)$, a = 9.681(1), b = 10.000(1), c = 8.7686(9) Å, $\alpha = 103.81(1)^{\circ}, \beta = 102.243(9)^{\circ}, \gamma = 66.244(8)^{\circ}, V = 725.9(2) \text{ Å}^3, Z = 2, D_{calc} = 1.191 \text{ g/cm}^3, Z = 2, D_{calc} = 1.191 \text{ g/cm}^3, Z = 2, Z = 1.191 \text{ g/cm}^3, Z = 1.191 \text{ g/cm}$ λ (CuK α) = 1.54178 Å, μ = 7.34 cm⁻¹, F(000) = 284, T = 296 K, R = 0.045 for 1986 observations. **2ma** : $C_{12}H_{24}N_2O_4$; FW 260.33, monoclinic, $P_{21}/c(\#14)$, a = 8.6460(6), b = 9.7703(8), c = 9.2555(6) Å, β = 106.786(5)°, V = 748.53(9) Å³, Z = 2, D_{calc} = 1.155 g/cm³, λ (CuK α) = 1.54178 Å, μ = 7.12 cm⁻¹, F(000) = 284, T = 296 K, R = 0.051 for 656 observations. $2re : C_{18}H_{36}N_2O_4$; FW 344.49, monoclinic, $P2_1/c(#14)$, a = 11.953(2), b = 13.432(1), c = 11.953(2), c = 1113.459(2) Å, $\beta = 102.243(9)^{\circ}$, V = 2111.7(4) Å³, Z = 4, D_{calc} = 1.083 g/cm³, λ (CuK α) = 1.54178 Å, $\mu = 6.08 \text{ cm}^{-1}$, F(000) = 760, T = 296 K, R = 0.036 for 2106 observations. **2rh** : $C_{32}H_{48}N_2O_4$; FW 524.74, monoclinic, $P_{21}/c(#14)$, a = 11.590(2), b = 12.439(3), c = 44.677(2) Å, $\beta = 96.446(8)^{\circ}$, V = 6400(1) Å³, Z = 8, D_{calc} = 1.089 g/cm³, λ (CuK α) = 1.54178 Å, μ = 5.60 cm^{-1} , F(000) = 2288, T = 296 K, R = 0.042 for 2832 observations. **2ri** : C₂₈H₅₆N₂O₄; FW 484.76, trigonal, $R\overline{3}$ (#148), a = 35.038(3), c = 13.555(3) Å, V = 14410(3) Å³, Z = 18, D_{calc} = 1.005 g/cm³, λ (CuK α) = 1.54178 Å, μ = 5.15 cm⁻¹, F(000) = 4860, T = 296 K, R = 0.050 for 2009 observations. Detailed X-ray crystallographic data of 2ra, 2ma, 2re, 2rh, and 2ri are available from the Cambridge Crystallographic Data Centre.
- 5. The structures of the compounds prepared were confirmed by ¹H-NMR, IR, LRMS, and HRMS or elemental analysis.

(Received in Japan 27 May 1996; revised 2 September 1996; accepted 10 September 1996)