THE REACTION OF 1-ALKYLDIHYDROISOQUINOLINES WITH BENZYNE. AN UNEXPECTED ENTRY TO DIBENZINDOLIZINES.

Nieves Atanes, ^a Enrique Guitián, ^a Carlos Saá, ^a Luis Castedo^{*}, ^a and José M. Saá⁺, ^b

^aDepartamento Química Orgánica, Facultad de Química, y Sección Alcaloides, CSIC. Santiago de Compostela (Spain)

^bDepartamento Química Orgánica, Facultad de Ciencias, Universitat de les Illes Balears E-07071

Abstract: The reaction of 1-ethylidene-2-formyl-1,2,3,4-tetrahydroisoquinolines $\frac{4a}{4a}$ and $\frac{4b}{4b}$, or 1-ethyl-3,4-dihydroisoquinolines $\frac{3a}{4a}$ and $\frac{3b}{4b}$, with benzyne led, by a formal 3+2 cycloaddition, to dibenzindolizines $\frac{5a}{4a}$ and $\frac{5b}{4b}$, respectively. Compound $\frac{5b}{4b}$ was also synthesized by photocyclization of enamine $\frac{6}{6}$.

For the past few years we have been involved in a program whose main objective is the design and development of new approaches to the synthesis of the various classes of isoquinoline alkaloids^{1,2}. In particular, our recently developed intermolecular benzyne cycloaddition (IBC) approach has proved to be a highly convergent, regioselective and versatile method for the synthesis of dehydroaporphines, dioxoaporphines and aristolactams^{3,4}, noraporphines and oxoaporphines⁵, and, most recently, 13-substituted protoberberines⁶. The crucial step of the simplest and most characteristic version of the IBC approach (Scheme 1), involves the formal (4+2) cycloaddition of benzyne and an N-protected alkylidene isoquinoline (as the 4π electron moiety). This directly provides the oxidized skeleton of a phenanthrene.

The recent isolation of trichoguattine⁷, a Guatteria alkaloid, led us to attempt an IBC synthesis of <u>1a</u>, the structure ascribed to this alkaloid⁷. The results were unexpected. The required 1-ethylidene-2-formyl-3,4-dihydroiso-quinoline <u>4a</u>⁸ was prepared uneventfully from the phenethylamine <u>2a</u> in good yield as a mixture of E and Z isomers, but when this precursor was reacted with benzyne (generated by thermal decomposition of benzenediazonium-2-carboxylate⁹) the main product isolated (26%) was a white crystalline solid, mp

178-180°C (MeOH), whose spectroscopic data were consistent with its being the 12-methyl-dibenzindolizines <u>5a</u>. Besides the molecular ion peak at m/z 277 (100%), significant features of these data included signals in the PMR (2.58 (s, 3H, Me), no signals above 7.6 ppm) and a UV absorption pattern (λ_{max} : 238, 262, 270, 333, 348 sh) analogous to that of some synthetic dibenzindolizines.

A similar result was obtained when $\underline{4b}$ was reacted with benzyne: the main product was $\underline{5b}$, as was confirmed by comparison (mp, UV, IR, NMR) with authentic $\underline{5b}$ synthesized in 11% yield using the method of Ninomiya et al.¹⁰ by photochemical electrocyclization of precursor $\underline{6}$, itself prepared from commercially available 3,4-dimethoxyphenylacetic acid $\underline{7}$ through the sequence of steps outlined in Scheme 3.

The puzzling formation of the N-aryl bond of 5 with concomitant loss of the formyl group of 4 suggested the possibility of a hydrolytic conversion of 4 into imine 3 promoted by residual water and trichloroacetic acid (TCA) present in benzenediazonium-2-carboxylate preparations. As Table 1 shows, hydrolisis of 4 is only partial after 2 h reflux in DME, so that the direct formation of 5 from 4 cannot be definitely ruled out. We nevertheless decided to investigate the reactivity of 1-alkyl-3,4-dihydroisoquinolines 3 with benzyne. At the time, the very few reports in the literature described (2+2) cycloaddition as the most usual reaction between imines and benzyne^{11,12,13}. As expected,

reaction of imine <u>3b</u> with benzyne generated as usual, yielded <u>5b</u> in 38% yield together with a highly insoluble amorphous yellow material identified tentatively as the azocompound <u>8</u> $(R=Me)^{14}$, probably produced by benzenediazonium-2-carboxylate being trapped by the enamine tautomer of <u>3b</u>. The formation of the byproduct <u>8</u> (R=Me) was finally avoided by thoroughly washing the diazonium salt with dry DME before its addition to the reaction mixture.

		Ţ	t	
<u>4b</u>	DME + H ₂ 0 (2%)	Δ	2 h	No reaction
11	DME + TCA(trace)	Δ	2h	$\underline{3b} + \underline{4b}$
	DME + H ₂ 0 + TCA	Δ	2 h	$\underline{3b} + \underline{4b}$

As a worthwhile working hypothesis for the reaction $(\underline{3b} + \underline{benzyne} ----- \underline{5b})$ we thought that nitrogen attack on benzyne followed by subsequent β hydrogen abstraction might lead to intermediate $\underline{6}$. This could then suffer a thermal disrotatory 6π electron electrocyclization to an intermediate such as $\underline{9}$ capable of producing the final product $\underline{5b}$ by way of a benzyne-promoted dehydrogenation. Analogous dehydrogenations have been noticed by ourselves³⁻⁵ and other workers (Scheme 4)^{15,16}.

Unfortunately, the reaction of $\underline{6}$ with benzyne under the usual conditions yielded dehydroaporphine $\underline{10}$ together with N,N-diarylaminoketone $\underline{11}$, a product possibly derived from reaction of benzyne with the hydrolysed product of enamine 6 (Scheme 5).

SCHEME 5

The mechanism for the formation of <u>5b</u> shown in Scheme 4 must accordingly be rejected, neither <u>10</u> nor <u>11</u> having been detected in the reaction of <u>3b</u> with benzyne. Finally, another puzzling result was obtained when the above (3+2), cycloaddition was applied to 1-methyl-3.4-dihydroisoquinoline <u>3c</u> in an attempt to synthesize the plane dibenzindolizine skeleton present in some naturally occurring alkaloids. All attempts to react <u>3c</u> with benzyne under the usual conditions were frustrated by the exclusive formation of the yellow azo compound <u>8</u> (R=H)¹⁴, which precipitated from the reaction mixture even when carefully washed benzenediazonium-2-carboxylate was used. It is now clear to us that subtle factors not yet understood operate in the

above formal (3+2) cycloaddition reaction of imines with benzyne. Further work in progress will try to offer a mechanistic rationale for the results reported here.

ACKNOWLEDGEMENT: We thank the Comisión Asesora (Spain) for its financial support.

REFERENCES

- 1. M.Shamma, J.L.Moniot, "Isoquinoline Alkaloid Research 1972-1977" Plenum Press, 1978.
- 2. M.Shamma "The Isoquinoline Alkaloids", Academic Press, 1972.
- 3. L.Castedo, E.Guitián, J.M.Saá, R.Suau, Tet.Lett., 1982, 457.
- 4. L.Castedo, E.Guitián, C.Saá, R.Suau, and J.M.Saá, Tet.Lett., 1985, 2107.
- 5. C.Saá, E.Guitián, L.Castedo, and J.M.Saá, Tet.Lett., 1985, 26, 4559.
- 6. C.Saá, E.Guitián, L.Castedo, R.Suau, and J.M.Saá, <u>J.Org.Chem.</u>, 1986, <u>51</u>, 2781.
- R.Hocquemiller, S.Rasamizafy, and A.Cavé, Communication to the Symposium on "The Chemistry and Biology of Isoquinoline Alkaloids", London, 1984.
- 8. All new compounds gave elemental analisis and/or spectroscopic data.
- 9. I.Tabushi, H.Yamada, Z.Yoshida, and R.Oda, Bull.Chem.Soc.Jpn., 1977, 50, 285.
- 10. I.Ninomiya, J.Yasui, and T.Kiguchi, <u>Heterocycles</u>, 1977, <u>6</u>, 1855.
- 11. V.Nair, K.H.Kim, J.Org.Chem., 1975, 40, 3784.
- 12. J.Nakayama, H.Midorikawa, and M.Yoshida, Bull.Chem.Soc.Jpn., 1975, 48, 1063.
- 13. C.W.G.Fishwick, R.C.Gupta, and R.C.Storr, JCS Perkin I, 1984, 2827.
- 14. Compound <u>8</u> (R=H): mp 252-254°C(MeOH); IR(KBr)v_{max}: 3400-2200, 1640, 1600, 1560 cm⁻¹; PMR(250 MHz, CDCL₃+TFA, δ): 3.12(t,J=7.5Hz,2H,CH₂), 3.89(t,J=7.5Hz,2H,CH₂N), 3.93(s,3H,OMe), 4.04(s,3H, OMe), 6.90(s,1H,Ar), 7.07(t,J=7.5Hz,1H,Ar), 7.40(s,1H,Ar), 7.55(d,J=8.2Hz,1H,Ar), 7.81(d,J=8.4 Hz,1H,Ar), 7.96(d,J=7.9Hz,1H,Ar), 8.09(s,1H,viny1), 8.96(s,broad); MS(FAB) m/z(%): 353.1375(M⁺, 72); C₁₀H₁₉N₃O₄.

Compound <u>8</u> (R=Me): mp 240-242°C(MeOH); IR(KBr) v_{max} : 3400-2200, 1640, 1600, 1580 cm⁻¹; PMR(250 MHz, CDCl₃+TFA, δ): 2.38(s,3H,Me), 3.12(t,J=7.4Hz,2H,CH₂), 3.89(s,3H,OMe), 3.92(t,J=7.4Hz,2H,CH₂N), 4.07(s,3H,OMe), 6.97(s,1H,Ar), 7.18(t,J=6.9Hz,1H,Ar), 7.42(s,1H,Ar), 7.4-7.7(m,2H,Ar), 8.16(d,J=8Hz,1H,Ar).

- 15. S.F.Dyke, A.J.Floyd, and S.E.Ward, <u>Tetrahedron</u>, 1970, <u>26</u>, 4005.
- 16. R.Harrison, H.Heaney, J.M.Jablonski, K.G.Mason, and J.M.Sketchley, JCS (C), 1969, 1684.

(Received in UK 5 January 1987)