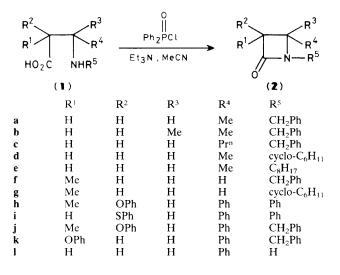
J. CHEM. SOC., CHEM. COMMUN., 1988

A Convenient Method for $\beta\mbox{-Lactam}$ Formation from $\beta\mbox{-Amino}$ Acids using Diphenylphosphinic Chloride


Sunggak Kim,* Phil Ho Lee, and Tai Au Lee

Department of Chemistry, Korea Advanced Institute of Science and Technology, Seoul 130–012, Korea

Diphenylphosphinic chloride is found to be very effective in promoting β -lactam formation from β -amino acids.

A new method for preparing β -lactams from β -amino acids is of particular interest in connection with the synthesis of β -lactam antibiotics,¹ and several efficient reagents such as triphenylphosphine/di-2-pyridyl disulphide² and 2-chloro-1methylpyridinium iodide³ have been reported in recent years.⁴ Although organophosphinic chlorides have been successfully utilized in peptide synthesis,⁵ as far as we are aware their application in forming β -lactams from β -amino acids has not been reported. We have found that diphenylphosphinic chloride in acetonitrile is very effective for inducing β -lactam formation from β -amino acids.

Among the solvents tested, acetonitrile gave the best

results, although dichloromethane and tetrahydrofuran were also effective.

Using N-benzyl-3-aminobutyric acid as a model compound with diphenylphosphinic chloride and triethylamine under high dilution conditions (0.01 M), 78% of N-benzyl-4-methylazetidin-2-one was obtained in acetonitrile at 80 °C in 10 h, whereas 61 and 68% of the same β -lactam were obtained in dichloromethane and tetrahydrofuran, respectively. In a typical experiment, diphenylphosphinic chloride (1.2 equiv.) and triethylamine (1.2 equiv.) were added to a suspension of the β -amino acid in acetonitrile (0.01 M) and the reaction mixture was stirred at 80 °C for 10 h. After work-up with Na₂CO₃ solution and solvent removal, the crude product was purified by passing through a short column of silica gel.

As shown in Table 1, *N*-substituted β -amino acids were cleanly cyclized into the corresponding β -lactams in high yields. However, yields were poor when the amino group is

Table 1. Synthesis of β -lactams from β -arr

β-Lactam	% Yield	β-Lactam	% Yield
(2a)	78	(2g)	81
(2b)	94	(2h)	85ª
(2c)	80	(2i)	88 ^b
(2d)	78	(2j)	98°
(2e)	70	(2k)	96 ^d
(2f)	72	(21)	31

^a Mixture of diastereoisomers (2:3). ^b Mixture of *cis*- and *trans*isomers (1:5). ^c Pure single isomer. ^d *cis*-Isomer from pure *threo*-(1k).

primary. In case of β -amino acids (1h)—(1k),⁶ it is noteworthy that the stereochemistry of the β -amino acids was preserved in the cyclization.

In conclusion, the present method offers several advantages over previous methods: the reagent is readily available, and the β -lactams are easily separated, and formed in high yields.

We gratefully acknowledge financial support from the Korea Science and Engineering Foundation.⁷

Received, 5th April 1988; Com. 8/01307A

References

- N. S. Isaacs, Chem. Soc. Rev., 1976, 15, 181; A. K. Mukerjee and A. K. Singh, Tetrahedron, 1978, 34, 1731; K. Hirai, Synth. Org. Chem. Jpn., 1980, 38, 97.
- 2 S. Kobayashi, T. Iimori, T. Izawa, and M. Ohno, J. Am. Chem. Soc., 1981, 103, 2406.
- 3 H. Huang, N. Iwasawa, and T. Mukaiyama, Chem. Lett., 1984, 1465.
- 4 Y. Watanabe and T. Mukaiyama, *Chem. Lett.*, 1981, 443; S. Kim,
 S. B. Chang, and P. H. Lee, *Tetrahedron Lett.*, 1987, 2735.
- 5 R. Ramage, C. P. Ashton, D. Hopton, and M. J. Parrott, *Tetrahedron Lett.*, 1984, 4825.
- 6 I. Ojima, S. Inaba, and M. Nagai, Synthesis, 1981, 545.