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ABSTRACT

Pd(PhCN)2Cl2/P(t-Bu)3 serves as an efficient and a versatile catalyst for room-temperature Sonogashira reactions of aryl bromides.

The Sonogashira coupling reaction of terminal acetylenes
with aryl and vinyl halides provides a powerful method for
synthesizing conjugated alkynes, an important class of
molecules that have found application in diverse areas
ranging from natural product chemistry to materials sci-
ence.1,2 With respect to the organic halide, the following order
of reactivity has been observed: vinyl iodide≈ vinyl
bromide> aryl iodide > vinyl chloride . aryl bromide.2

For aryl bromides, the least reactive of the commonly
employed organic halides, efficient Sonogashira coupling
typically requires heating to∼80 °C.2 Obviously, reactions
that proceed at room temperature have significant practical
advantages relative to those that require elevated tempera-
tures. To the best of our knowledge, however, the only
descriptions of room-temperature Sonogashira couplings of
unactivated aryl bromides are the reports of Sinou (three
examples)3 and Villemin (two examples).4

We and others have recently demonstrated that palladium
catalysts that incorporate bulky, electron-rich phosphines can
display unusually high reactivity in a wide range of coupling
processes.5-8 To date, however, there have been no reports
of applications of these ligands to the Sonogashira reaction.
In this Letter, we establish that one such ligand, P(t-Bu)3,
does indeed furnish a highly active catalyst for Sonogashira
couplings, providing a mild, efficient, and general method
for effecting reactions of aryl bromides at room temperature
(Scheme 1).

For our optimization studies, we chose to focus on the
Sonogashira coupling of 4-bromoanisole, an electron-rich and
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therefore relatively unreactive aryl bromide, as our test
substrate. As shown in Scheme 2, we have found that, among

the five ligands that are illustrated, P(t-Bu)39 is uniquely
effective in accomplishing the palladium-catalyzed Sono-
gashira reaction at room temperaturestriarylphosphines, as
well as sterically demanding and electron-rich PCy3, furnish
essentially none of the desired coupling product.10 Additional
optimization experiments have revealed that replacement of
Pd(MeCN)2Cl2/NEt3 with Pd(PhCN)2Cl2/HN(i-Pr)2 leads to
a modest enhancement in reactivity.11

By use of these conditions, we can catalyze the Sono-
gashira coupling of a wide variety of aryl bromides and

terminal acetylenes at room temperature (Table 1).12 Thus,
bromobenzene reacts with an array of alkynes in good to
excellent yields (entries 1-3). As illustrated in entries 4-7,
less reactive 4-bromoanisole also couples with high ef-
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Table 1. Room-Temperature Sonogashira Couplings Catalyzed
by Pd(PhCN)2Cl2/P(t-Bu)3
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ficiency. Even very electron-rich 4-bromo-N,N-dimethyla-
niline reacts cleanly at room temperature (entry 8). The
coupling of 4′-bromoacetophenone that is depicted in entry
9 establishes that ketones are compatible with the reaction
conditions. Finally, Pd(PhCN)2Cl2/P(t-Bu)3 can even effect
Sonogashira couplings of hindered aryl bromides at room
temperature (entries 10-12).

Because the goal of this study has been to establish a truly
general protocol for room-temperature Sonogashira couplings
of aryl bromides, we have applied an identical experimental
procedure to all of the reactions that are illustrated in Table
112si.e., the reactions have not been individually optimized
(e.g., with respect to catalyst loading). We have briefly
addressed the issue of whether a lower catalyst loading may
be employed, and we have found that it maysthus, 4-bromo-
anisole cleanly couples with phenylacetylene in the presence
of just 0.5% Pd(PhCN)2Cl2/1.0% P(t-Bu)3 (reaction time: 22
h; 99% isolated yieldw ∼200 turnovers).

In summary, we have determined that Pd(PhCN)2Cl2/P(t-
Bu)3 serves as an efficient and a versatile catalyst for

Sonogashira reactions of aryl bromides, accomplishing a
wide range of couplings at room temperature. We believe
that this system compares favorably with other catalyst
systems that have been reported for this process. This study
provides further evidence of the usefulness of bulky, electron-
rich phosphines in palladium-catalyzed coupling reactions.
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