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Abstract: Tertiary cyclopropanols, when treated with an excess of
amyl nitrite at room temperature, are smoothly converted into
dimeric b-nitrosoketones. Heating the methanolic solutions of the
latter under reflux gives 5-substituted isoxazoles in good yields.
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Substituted cyclopropanols can be easily prepared by a
number of procedures, including the reductive cyclopro-
panation of esters with dialkoxytitanacyclopropane re-
agents,1,2 desilylation of cyclopropanol silyl ethers,3,4

alkylation of cyclopropanone hemiacetals,5 reductive cy-
clization of b-halogeno ketones6 as well as using some
other methods.7 Synthetic applications of these com-
pounds are based mainly on the C1–C2 or C1–C3 cyclopro-
pane ring-opening reactions.7 In many cases, the
conversion of cyclopropanols or their derivatives into
alkyl ketones, a,b-unsaturated ketones, 2-substituted
alkyl halides, as well as to some other compounds, occurs
in a highly selective manner, and has a considerable pre-
parative value.7,8

At the end of 1960s, De Puy and co-workers9 observed a
remarkably high activity of cyclopropyl nitrites in the re-
actions involving homolytic cleavage of the N–O bond,
which proceeded at temperatures 100–250 °C lower than
for nitrites not associated with a cyclopropyl ring. These
transformations proceeded via opening of the cyclo-
propane ring and resulted in formation of dimeric b-ni-
trosoketones or 5-hydroxy-D2-isoxazolines. Also, b-
nitrosoketones were reported to be transformed into isox-
azoles upon standing or with some heating.9b Since the
cleavage of the N–O bond in isoxazoles is widely used for
the preparation of various 1,3-bifunctional compounds in-
cluding some natural products,10 the transformation of cy-
clopropanols 1 into isoxazoles 3 via b-nitrosoketones 2

has a substantial synthetic potential. At the same time, the
procedure proposed for the generation of cyclopropyl ni-
trites by treating cyclopropanols with nitrosyl chloride
(NOCl) in the presence of pyridine9b has some significant
disadvantages. First, a careful control of the reagent added
is required because an excess of NOCl was found to cause
decomposition of cyclopropyl nitrite. Furthermore, the
decomposition of cyclopropyl nitrites may also be in-
duced by pyridine hydrochloride, which must be removed
by low-temperature filtration. It should also be noted that
the protocol for the conversion of b-nitrosoketones into
the respective isoxazoles9b was not described in detail.

Here, we report a simple and efficient experimental pro-
cedure resulting in transformation of cyclopropanols 1
into isoxazoles 3 via b-nitrosoketones 2 (Scheme 1). We
found that keeping the mixture, composed of monosubsti-
tuted cyclopropanol 1a–g,11 an excess of freshly prepared
amyl nitrite,12 and small amount of benzene at room tem-
perature for two to three days yielded dimeric b-ni-
trosoketones 2a–g almost quantitatively (as was
determined by 1H NMR). After the removal of benzene
and excess of amyl nitrite under reduced pressure crystal-
line compounds 2a–d were isolated as mixtures of Z and
E isomers.13 Under these conditions monosubstituted cy-
clopropanols bearing alkyl (see Table 1, entries 1 and 2),
aryl (entry 4), alkenyl (entry 5), halogenalkyl (entry 3),
alkoxyalkyl (entries 6 and 7) substituents were converted
into b-nitrosoketones 2 in high yields, whereas 1,2-disub-
stituted cyclopropanol 1h gave the corresponding product
only in a poor yield (entry 8).

The transformation of b-nitrosoketones 2 to isoxazoles 3
proceeded clearly in methanolic solutions heated under
reflux for two to three days (Scheme 1) and the products
were isolated in good yields. In order to avoid transacetal-
ization, the cyclization of nitroso compound 2g was car-
ried out under reflux in ethanol. Although the reaction was

Scheme 1

OH

R O
N

R
R

O

N+

R

O

N+

O–

O–

1 2

C5H11ONO, C6H6

r.t., 48–78 h

3

MeOH, reflux,
10–72 h

67–92% over two steps

D
ow

nl
oa

de
d 

by
: U

ni
ve

rs
ity

 o
f  

Ill
in

oi
s.

 C
op

yr
ig

ht
ed

 m
at

er
ia

l.



3428 D. H. Churykau, O. G. Kulinkovich LETTER

Synlett 2006, No. 20, 3427–3430 © Thieme Stuttgart · New York

completed after ten hours in this case, the use of ethanol
for cyclization of nitroso compound 2a led to a mixture of
isoxazole 3a and 5-ethoxy-5-hexyl-D2-isoxazoline.

The conversion of b-nitrosoketones 2 into isoxazoles 3
proceeded via the intermediate formation of 5-hydroxy-
D2-isoxazolines 4 that could be isolated as individual

compounds after a brief reflux of nitroso compounds 2 in
methanol. Thus, 5-hexyl-5-hydroxy-D2-isoxazoline 419

was isolated in an almost quantitative yield after heating a
methanolic solution of nitrosoketone 2a under reflux for
two hours and subsequent removal of the solvent in vacuo
(Scheme 2).

Table 1 The Conversion of Cyclopropanols 1 to b-Nitrosoketones 2 and 5-Substituted Isoxazoles 3

Entry Cyclopropanol b-Nitrosoketonea–c Yield (%)d Isoxazolee,f Yield (%)g

1

1a

2a

68

3a

91

2

1b

2b

77

3b

92

3

1c
2c

79

3c

85

4

1d
2d

62

3d

80

5

1e

2e

>90h

3e

84

6

1f

2f

>90h

3f

68

7

1g

2g

>90h

3g

67i

8

1h

2h

~33h

3h

36h

a Typical procedure for the preparation of b-nitrosoketones 2 was followed. See ref.14 for details.
b For selected data of b-nitrosoketones 2, see ref.15

c Products, as indicated by IR, are dimers.15,16

d Isolated yields of crystalline compounds (mixture of Z and E isomers).
e Typical procedure for the transformation of b-nitrosoketones 2 to isoxazoles 3 was followed. For details, see ref.17

f For selected data of isoxazoles 3, see ref.18

g Isolated yields of isoxazoles 3 after distillation or column chromatography on silica gel.
h Determined by 1H NMR spectra.
i Cyclization was carried out in EtOH.
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Scheme 2

In conclusion, a simple and efficient procedure has been
developed to prepare 5-substituted isoxazoles from easily
available tertiary cyclopropanols by treating the latter
with freshly prepared amyl nitrite and subsequent heating
of methanolic solutions of the b-nitrosoketones formed.
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(19) Analytical data of 4: 1H NMR (400 MHz, CDCl3): d = 0.88 
(t, J = 6.9 Hz, 3 H), 1.22–1.53 (m, 8 H), 1.82–1.97 (m, 2 H), 
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Hz, J2 = 1.6 Hz, 1 H), 3.10 (br s, 1 H), 7.20–7.23 (m, 1 H). 
13C NMR (100 MHz, CDCl3): d = 13.97, 22.44, 24.60, 29.13, 

31.58, 37.95, 44.86, 106.61, 147.16. IR (CCl4): 3598, 3395, 
1722, 1601 cm–1. Anal. Calcd for C9H17NO2 (171.24): C, 
63.13; H, 10.01. Found: C, 63.28; H, 9.75.

(20) The reaction proceeded less smoothly under elevated 
temperatures or in the presence of acidic or basic catalysts.
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