COMMENT

COMMENT ON "REACTION OF THE GROUND AND METASTABLE EXCITED CI⁺ IONS WITH SEVERAL NEUTRAL MOLECULES AT 300 K" BY A.B. RAKSHIT

J.D.C. JONES, T.T.C. JONES, K. BIRKINSHAW and N.D. TWIDDY Department of Physics, U.C.W., Penglais, Aberystwyth, Dyfed, UK

Received 31 January 1981; in final form 18 April 1981

Metastable excited CI⁺ was recently reported by Rakshit in a study using the Aberystwyth SIFT apparatus. We conclude that this report refers to a mixture of CI⁺ and HCI⁺, and that the results are hence erroneous. Our recent work using the same apparatus gives no evidence for excited CI⁺.

In a recent publication [1] evidence was given for the presence of electronically excited Cl^+ with a lifetime of ≥ 25 ms. The reactions of these ions with several molecules were studied using the methods described previously [2,3] and rate constants for the reactions were given. The above results are in conflict with results obtained subsequently using the same apparatus (the Aberystwyth SIFT) in which no excited states of Cl^+ were observed [4].

A study of the original data of Rakshit indicates that the ion identified as Cl^{+*} was in fact HCl^{+} which was formed by electron bombardment of CH_3Cl in the ion source. It appears likely that adjacent ions in the mass spectrum were not fully resolved by the ion source and detector quadrupole mass filters with the result that the peak assumed to be Cl^{+} was in fact Cl^{+} and HCl^{+} . CO_2 was used by Rakshit as a monitor gas and the appearance of CO_2^{+} was taken to indicate the presence of excited Cl^{+} as the charge transfer between ground-state $Cl^{+}(^{3}P)$ and CO_2 is endothermic. However, the original experimental data indicate that the reaction thought to be

 $Cl^{+*} + CO_2 \rightarrow CO_2^+ + Cl$

was in fact

 $HCI^+ + CO_2 \rightarrow CO_2H^+ + CI.$

Part of the evidence on which the above assertions are made is listed below:

(1) In the study of the reaction between CI^+ and

CO, Rakshit used CO_2 as a monitor gas. This is inappropriate as the reaction

$$CO^+ + CO_2 \rightarrow CO_2^+ + CO, \quad k = 1.1 \times 10^{-9} \text{ cm}^3 \text{ s}^{-1},$$

occurs rapidly [5], and therefore if Cl^{+*} reacted with CO to give CO⁺ and CO₂ was used as monitor gas, the CO₂⁺ concentration should be independent of CO flow rate and no CO⁺ should be observed. Rakshit found that the ion CO⁺ increased with CO flow rate and the CO₂⁺ decay curve indicated a rate constant for the reaction

$$Cl^{+*} + CO \rightarrow CO^{+} + Cl \tag{1}$$

of 7.1×10^{-10} cm³ s⁻¹. Our results showed no decay of the mass 35 peak with CO flow rate but we observed the reaction

$$HCl^{+} + CO \rightarrow HCO^{+} + Cl$$
 (2)

to proceed with a rate constant of $(8 \pm 2) \times 10^{-10}$ cm³ s⁻¹. We therefore conclude that Rakshit was in fact observing reaction (2) rather than (1), and the decay of "CO₂⁺" was in fact the decay of CO₂H⁺;

(2) The reaction

$$C!^+ + H_2 \rightarrow HCl^+ + H_1$$

was studied by Rakshit using CO_2 monitor gas. The intensity of " CO_2^+ " as a function of H_2 flow rate showed an unusual maximum. As the H_2 flow rate increased further the CO_2^+ decayed with a slope, similar to that of HCI^+ as observed by the direct method. A maximum

0 009--2614/81/0000--0000/\$ 02.50 © North-Holland Publishing Company

Volume 80, number 3

in the " CO_2^+ " curve is not understandable in terms of the presence of excited CI^+ but could be understood if the CO_2^+ observed by Rakshit is in fact CO_2H^+ and the reaction

 $HCl^+ + CO_2 \rightarrow CO_2H^+ + Cl$

is the origin of the CO_2H^+ .

The proton affinity of Cl can be calculated from the data given in ref. [6] to be 5.3 eV and therefore proton transfer from HCI⁺ to the reactant gases except N_2 , O_2 and H_2 used by Rakshit is exothermic and would be expected to occur.

We have studied the reaction between CI^+ and O_2 using low mass resolution of the ion source and detector mass filters. The resulting overlap of CI^+ and HCI^+ peaks gave rise to the CO_2H^+ ion (assumed by Rakshit to be CO_2^+) which showed a single-exponential decay in contrast to the double-exponential decay in fig. 1 of ref. [1].

We therefore conclude that results obtained from the Aberystwyth SIFT have provided no evidence for the presence of long-lived excited states of Cl^+ .

Note on Rakshit's reply. Rakshit has not answered the points raised in our Comment. The original data from which fig. 1 of Rakshit's reply is plotted appear to show that a drift of intensity was occurring which could explain the decay of the Cl⁺. The assumption that the presence of water reduced the N_2^+ count rate by $\approx 90\%$ is doubtful and we have observed that Cl⁺ itself reacts with H₂O. In his reply Rakshit concludes that Cl^{+*} is not produced by 40 eV electron impact on CH₃Cl and is consequently at variance with his original paper in which fig. 1 shows data taken using a 40 eV electron energy which according to him show the presence of Cl^{+*}.

References

- [1] A.B. Rakshit, Chem. Phys. Letters 75 (1980) 283.
- [2] J. Glosik, A.B. Rakshit, N.D. Twiddy, N.G. Adams and D. Smith, J. Phys. B11 (1978) 3365.
- [3] M. Tichý, A.B. Rakshit, D. Lister, N.D. Twiddy, N.G. Adams and D. Smith, Intern J. Mass Spectrom. Ion Phys. 29 (1979) 231.
- [4] A.S.M. Raouf, J.D.C. Jones, D.G. Lister, K. Birkinshaw and N.D. Twiddy, J. Phys. B13 (1980) 2581.
- [5] N.G. Adams, D. Smith and D. Grief, Intern. J. Mass Spectrom. Ion Phys. 26 (1978) 405.
- [6] J.L. Franklin, J.G. Dillard, H.M. Rosenstock, J.T. Herron, K. Draxl and F.H. Field, NSRDS-NBS 26 (1969);
 G. Herzberg, Spectra of diatomic molecules (Van Nostrand, Princeton, 1950).