SIMPLE SYNTHESES OF MARINE ALKALOID, (\pm) -CHELONIN A, and its analogs¹

Masanori Somei,* Kazuko Aoki, Yoshiyuki Nagahama, and Kyoko Nakagawa

Faculty of Pharmaceutical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa 920, Japan

Abstract----The first total synthesis of (\pm) -chelonin A and syntheses of its analogs are achieved based on 1-hydroxyindole chemistry.

Chelonin A (1a, Scheme 1), was isolated from marine sponge Chelonaplysilla sp. and determined by D. J. Faulkner and co-workers. 2 They also reported its potent antimicrobial and antiinflammatory activities. 2 In this communication, we wish to report the first and simple total synthesis of (±)-la and syntheses of its analogs based on 1-hydroxyindole chemistry.3 First, we tried the synthesis of model compounds, 2,6-cis-2-(indol-3-y1)-6-phenylmorpholine (2a) and 2,6-cis-2-(1-methoxyindol-3-yl)-6-phenyl-Npropargylmorpholine (2c). 3-(2-Chloroacety1)-1-methoxyindole⁴ <math>(3), available from 1-methoxyindole (4), was converted to 3-(2-azidoacety1)-1-methoxyindole (5) in 87% yield by treatment with NaN3 in CH3CN-H2O for 2 h under reflux. Reduction of 5 with LiAlH4 in THF for 1 h at room temperature afforded 6a in 48% yield. The compound (6a) was alternatively produced in 72% yield by the reduction of 3-(2-aminoacetyl)-1-methoxyindole⁴ (7a) with $NaBH_{4}$ in MeOH for 1 h at room temperature. When 3 was reacted with propargyl amine (excess) in MeOH for 1 h under reflux, monomer (7b) and dimer (8) were produced in 53% and 32% yields, respectively. Reduction of 7b with NaBH4 in MeOH for 8 h at room temperature afforded 57% yield of

Scheme 1

6b. Subsequent reaction of 6a with styrene oxide in CH₃CN for 24 h under reflux produced 9a as a 1:1 mixture of diastereoisomers in 57% yield. Similar reaction of 6b with styrene oxide afforded 9b as a 1:1 mixture of diastereoisomers in 80% yields.

Treatments of 9a and 9b with 2N HCl in MeOH for 1 h or 20 min at room temperature smoothly underwent cyclization to give the desired 2b and 2c as a single isomer in both cases, in 74 or 70% yields, respectively. The ¹H-nmr spectrum of 2b shows the presence of two sets of H_{axial}-H_{axial} coupling (J=10.6 Hz), which clearly proves that phenyl and 1-methoxyindol-3-yl substituents are cis and equatorial. Similarly, the stereochemistry of 2c are proved to be cis and both substituents are equatorial. Catalytic hydrogenation of 2b over 10% Pd/C at room temperature and 1 atm for 4 h produced 2a in 51% yield.

Based on the successful model experiments, 6a was next treated with 3,4,5-trimethoxystyrene oxide⁵ under the similar reaction conditions as described above to give the regioisomers, 10 and 11, in 19 and 21% yields, respectively. Acid cyclizations of 10 and 11 formed the corresponding 1b and 12b in 89 and 81% yields, respectively. One pot preparations of 1b and 12b from 6a were realized in 16 and 15% overall yields, respectively, when the reactions of 6a with the epoxide and acid cyclization were carried out successively. Catalytic hydrogenation of 1b over 10% Pd/C at room temperature and 1 atm for 4 h produced 1a in 59% yield, while the same reaction of 12b afforded 12a in 57% yield.

Spectral data of natural product² (1a) are identical with those of (\pm)-1a and not with those of (\pm)-12a. Thus, the structure of chelonin A was alternatively proved by chemical synthesis. 3,4,5-Trimethoxyphenyl and indol-3-yl substituents of 12a are proved to be trans and equatorial, based on its ¹H-nmr spectrum showing two sets of H_{axial}-H_{axial} coupling (J=10.3 and 11.4 Hz).

In summary, we have developed a simple method which can produce various

chelonin analogs only by changing epoxide components. Since optically active epoxides are available, syntheses of chiral chelonin analogs are currently in progress.

ACKNOWLEDGMENT

We are grateful to Prof. Dr. D. J. Faulkner for kindly providing us with spectral data of chelonin A. This work is supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, and Culture of Japan, which is gratefully acknowledged.

REFERENCES AND NOTES

- 1. This is partly reported, Abstracts of Papers, 2, The 114th Annual Meeting of Pharmaceutical Society of Japan, Tokyo, March, 1993, p. 109. This report is Part 72 of a series entitled "The Chemistry of Indoles". Part 71: M. Somei, K. Kobayashi, K. Tanii, T. Mochizuki, Y. Kawada, and Y. Fukui, Heterocycles, 1995, 40, No. 1, in press. All new compounds gave satisfactory spectral and elemental analysis for crystals or high resolution mass spectral data for oil. 1a) mp 161-162°C (decomp.); 1b) oil; 2a) hard oil; 2b) hard oil; 2c) oil; 5) mp 69-70°C; 6a) mp 126-127°C (decomp.); 6b) mp 95-96°C; 7b) mp 76-77°C; 8)
- 2. S. C. Bobzin and D. J. Faulkner, J. Org. Chem., 1991, 56, 4403.
- 3. a) T. Kawasaki, A. Kodama, T. Nishida, K. Shimizu, and M. Somei, Heterocycles, 1991, 32, 221; b) M. Somei, T. Kawasaki, Y. Fukui, F. Yamada, T. Kobayashi, H. Aoyama, and D. Shinmyo, ibid., 1992, 34, 1877; c) F. Yamada, Y. Fukui, D. Shinmyo, and M. Somei, ibid., 1993, 35, 99; d) M. Somei and Y. Fukui, ibid., 1993, 36, 1859; e) Review: M. Somei, Yuki Gosei Kaqaku Kyokai Shi, 1991, 49, 205.

mp 173-174°C; 10) oil; 11) oil; 12a) mp 155-159°C; 12b) mp 124-126°C.

- 4. M. Somei, H. Sato, N. Komura, and C. Kaneko, Heterocycles, 1985, 23, 1101 and references cited therein.
- 5. 3,4,5-Trimethoxystyrene oxide was prepared from 3,4,5-trimethoxybenzaldehyde in 56% yield by the reaction with dimethylsulfoxonium methylide.