

0040-4039(95)02059-4

Formal Synthesis of Nitidine through Palladium-Catalyzed Isocoumarin Synthesis

Tatsuya Minami, Akemi Nishimoto, and Miyoji Hanaoka*

Faculty of Pharmaceutical Sciences, Kanazawa University 13-1 Takara-machi, Kanazawa 920, Japan

Abstract: The isoquinolone intermediate 9 for the synthesis of nitidine was synthesized through palladium-catalyzed formation of isocoumarin 7 from o-styrylbenzoic acid derivative 5, which was prepared from palladium-catalyzed coupling reactions of aryl iodide 1 and 2 with vinylsilane.

The fully aromatized benzo[c]phenanthridine alkaloids have attracted much attention because of their potential pharmacological activity, in particular their strong antileukemic activity¹. Extensive efforts have been directed toward the development of convenient syntheses of nitidine and fagaronine². We already reported that fully aromatized benzo[c]phenanthridine alkaloids were efficiently synthesized from the isoquinolone intermediates derived from protoberberines by a biogenetic process³ (Scheme 1). Our attention is now focused on synthesis of the isoquinolone intermediate⁴ from the corresponding isocoumarin, which was formed by the palladium-catalyzed cyclization of *o*-styrylbenzoic acid derivative.

Recently we reported that cyclization of o-alkenylbenzoic acids, which were easily prepared by the Heck-type reaction or cross-coupling reaction of halobenzoate, in the presence of catalytic amount of PdCl₂(CH₃CN)₂ and benzoquinone led to 3-substituted isocoumarins in high yield⁵ (Scheme 2). The 3-substituted isocoumarins thus obtained were converted to isoquinolone derivatives by treatment with primary amine or ammonia.

Methyl o-styrylbenzoate derivative 5 was prepared by the incorporation of two aryl groups to the ethylene part (Scheme 3). Aryl iodide 1^6 and 2 were chosen as the starting materials. Tetrabutylammonium hydrogen sulfate-promoted Heck-type reaction⁷ of aryl iodide 2 with styrene derivative 4, which was prepared by the cross-coupling reaction of 1 and a vinylmetal compound⁸, gave the desired o-styrylbenzoate derivative 5^9 in 61 % yield (condition C). To increase the yield of 5, we applied a sequential procedure namely: the Heck reaction of 1 with ethoxydimethylvinylsilane in triethylamine¹⁰ followed by the crosscoupling reaction of the product, styrylsilane 3^{11} , with 2. The Heck reaction of 1 proceeded smoothly to give the styrylsilane derivative 3 accompanied by the vinylated product 4 (condition A)¹². After removal of ammonium salt and all volatiles, the residue was reacted with 2 in the presence of a Pd catalyst and fluoride anion (condition B). The conversion yield of 5 by this sequential procedure¹³ reached 76 % based on 2 used.

Conditions;

A : PdCl₂(PPh₃)₂ (2 mol%), Et₃N, 90°C / 12 h

B : [(allyl)PdCl]₂ (5mol%), (EtO)₃P (10mol%), Bu₄NF (1.2 eq), THF, 60°C / 2 h

C : Pd(OAc)₂ (10mol%), PPh₃ (20mol%), Bu₄N·HSO₄ (1.0 eq), NaHCO₃ (4 eq), MS-3A, DMF, 80°C / 32 h

Scheme 3

The cyclization of o-styrylbenzoic acid derivative 6, which was prepared by hydrolysis of 5, was carried out by the use of a catalytic amount of $PdCl_2(CH_3CN)_2$ and benzoquinone (Scheme 4). Unfortunately, the prolonged reaction time yielded benzo[d]naphtho[1,2-b]pyran-6-one derivative 7⁹. Monitoring the reaction carefully, we found that the cyclization proceeded rapidly to form the isocoumarin derivative 8⁹ and the benzylidenephthalide derivative 9⁹. The optimum condition gave 8 in 48 % yield accompanied by 9 (4 %) and 7 (14 %). Isocoumarin 8 was found to be converted to 7 under the same conditions through the cationic cyclization by the action of a palladium reagent as a Lewis acid¹⁴.

Finally, treatment of 8 with ammonia followed by N-methylation gave the desired isoquinolone 10^{15} in 56% yield, which had already been converted to nitidine^{3b} (Scheme 5). In conclusion, the strategy presented here provides a new methodology for the construction of benzo[*c*]phenanthridine alkaloids.

ACKNOWLEDGMENTS : Financial support from the Ministry of Education, Science, and Culture, Japanese Government, in the form of a Grant-in-Aid for Scientific Research is gratefully acknowledged.

REFERENCES AND NOTES:

- a) Messmer, W. M.; Tin-Wo, M.; Fong, H. S.; Farnsworth, N. R.; Abraham, D. J.; Trojanek, J. J. Pharm. Sci. 1972, 61, 1858-1859; b) Tin-Wa, M.; Bell, C. L.; Bevelle, C.; Fong, H. S.; Farnsworth, N. R. *ibid.*, 1974, 63, 1476-1477; c) Suffness, W. M.; Cordell, G. A. *The Alkaloids* Brossi, A., Ed; Academic Press Orland, 1985, 25, 333-338; d) Recently, the activity related to inhibition of DNA topoisomerase I was reported. Fang, S.-D.; Wang, L.-K.; Hecht, S. M. J. Org. Chem. 1993, 58, 5025-5027.
- Reviews: a) Simanek, V. The Alkaloids Brossi, A., Ed; Academic Press Orland, 1985, 26, 185-240; b) Ninomiya, I.; Naito, T. Rec. Dev. Chem. Nat. Carbon Compd., 1984, 10, 9-90; c) Ishii, H.; Ichikawa, Y.; Kawanabe, E.; Ishikawa, M.; Ishikawa, T.; Kuretani, K.; Inomata, M.; Hoshi, A. Chem. Pharm. Bull., 1985, 33, 4139-4151; recent papers: d) Rigby, J. H.; Holsworth, D. D. Tetrahedron Lett. 1991, 32, 5757-5760; e) Martin, G.; Guitian, E.; Castedo, L. J. Org. Chem. 1992, 57, 5907-5911; f) Perez, D.; Guitian, E.; Castedo, L. J. Org. Chem. 1992, 57, 5911-5917; g) Seraphin, D.; Lynch, M. A.; Duval, O. Tetrahedron Lett. 1995, 36, 5731-5734.
- a) Hanaoka, M.; Motonishi, T.; Mukai, C. J. Chem. Soc. Perkin Trans. 1 1986, 2253-2256; b) Hanaoka, M.; Yamagishi, H.; Marutani, M.; Mukai, C. Chem. Pharm. Bull. 1987, 35, 2348-2354; c) Hanaoka, M.; Yamagishi, H.; Marutani, M.; Mukai, C. Tetrahedron Lett. 1984, 25, 5169-5172.
- 4. Couture, A.; Cornet, H.; Grandclaudon, P. Tetrahedron Lett. 1993, 34, 8097-8100.
- 5. Minami, T.; Nishimoto, A.; Nakamura, Y.; Hanaoka, M. Chem. Pharm. Bull. 1994, 42, 1700-1702.
- 6. The compound 1 was prepared from 1-iodo-3,4-methylenedioxybenzaldehyde by the Wittig methylenation followed by thallium oxidation as described in reference 4.
- 7. Jeffery, T.; Galland, J.-C. Tetrahedron Lett. 1994, 35, 4103-4106, and references cited therein.
- 8. The reaction of ethoxydimethylvinylsilane as mentioned in reference 11 gave 4 in 78 % yield using 10 mol% of Pd catalyst. In the case of vinyltributyltin, 87 % yield was achieved under the condition of the following reference: McKean, D. R.; Parrinello, G.; Renaldo, A. F.; Stille, J. K. J. Org. Chem. 1987, 52, 422-424.
- All new compounds gave satisfactory spectroscopic and analytical data. Representative data for selected compounds; 5: mp 147-148°C. IR (CHCl₃): 1710 cm⁻¹. ¹H-NMR (CDCl₃) δ 2.99 (d, 2H, *J* = 5 Hz), 3.33 (s, 6H), 3.91 (s, 3H), 3.99 (s, 3H), 4.04 (s, 3H), 4.50 (t, 1H, *J* = 5 Hz), 5.95 (s, 2H), 6.73 (s, 1H), 7.13 (s, 1H), 7.16 (d, 1H, *J* = 16 Hz), 7.18 (s, 1H), 7.48 (s, 1H), 7.79 (d, 1H, *J* = 16 Hz). Anal. Calcd for C₂₃H₂₆O₈: C, 64.18; H, 6.09. Found: C, 64.29; H, 6.09. 7: mp 192-193°C. IR (CHCl₃): 1730 cm⁻¹. ¹H-NMR (CDCl₃) δ 4.04 (s, 3H), 4.12 (s, 3H), 6.11 (s, 2H), 7.15 (s, 1H), 7.49 (s, 1H), 7.58 (d, 1H, *J* = 9 Hz), 7.81 (s, 1H), 7.84 (d, 1H, *J* = 9 Hz), 7.88 (s, 1H). Anal. Calcd for C₂₀H₁₄O₆: C, 68.57; H, 4.03. Found: C, 68.64; H, 3.80. 8: mp 142-143°C. IR (CHCl₃): 1710 cm⁻¹. ¹H-NMR (CDCl₃) δ 2.89 (d, 2H, *J* = 5 Hz), 3.34 (s, 6H), 4.00 (s, 3H), 4.02 (s, 3H), 4.61 (t, 1H, *J* = 5 Hz), 6.01 (s, 2H), 6.54 (s, 1H), 6.83 (s, 1H), 6.89 (s, 1H), 6.93 (s, 1H), 7.68 (s, 1H). Anal. Calcd for C₂₂H₂₂O₈: C, 63.76; H, 5.35. Found: C, 63.78; H, 5.43. 9: mp 205-206°C. IR (CHCl₃): 1750 cm⁻¹. ¹H-NMR (CDCl₃) δ 3.02 (d, 2H, *J* = 5 Hz), 3.36 (s, 6H), 3.97 (s, 3H), 4.06 (s, 3H), 4.49 (t, 1H, *J* = 5 Hz), 5.98 (s, 2H), 6.55 (s, 1H), 6.77 (s, 1H), 7.09 (s, 1H), 7.29 (s, 1H), 7.70 (s, 1H). Anal. Calcd for C₂₂H₂₂O₈: C, 63.76; H, 5.35. Found: C, 63.68; H, 5.49.
- 10. Yamashita, H.; Roan, B. L.; Tanaka, M. Chem. Lett. 1990, 2175-2176.
- a) Hatanaka, Y.; Hiyama, T. Synlett 1991, 845-853, and references cited therein; b) Tamao, K.; Kobayashi, J.; Ito, Y. Tetrahedron Lett. 1989, 30, 605-608; c) Takahashi, K.; Minami, T.; Ohara, Y.; Hiyama, T. Tetrahedron Lett., 1993, 34, 8263-8266; Bull. Chem. Soc. Jpn., 1995, 68, 2649-2665.
- 12. Isolation of vinylsiline 3 was difficult, so the yield of 3 (ca. 50 %) was determined by ¹H-NMR.
- 13. A full account of the sequential coupling reaction of two aryl iodides with ethoxydimethylvinylsilane will be described elsewhere.
- 14. Lipshutz, B. H.; Pollart, D.; Monforte, J.; Kotsuki, H. Tetrahedron Lett. 1985, 26, 705-708.
- 15. Treatment of 8 with methylamine did not give 10. The spectroscopic and analytical data of 10 were identified with those of the previously synthesized product^{3b}.

(Received in Japan 18 September 1995; revised 23 October 1995; accepted 27 October 1995)