SYNTHESIS OF 3-CARBOMETHOXY-3,4-DIALKYLCYCLOHEXANONES Werner M. Grootaert^{la}, Roelant Mijngheer and Pierre J. De Clercq^{lb^{*}} Department of Organic Chemistry, State University of Ghent, Laboratory for Organic Synthesis, Krijgslaan, 281 (S.4), B-9000 GENT (Belgium)

ABSTRACT

The uncatalyzed 1,4-addition of phenylmagnesium bromide and furylmagnesium iodide to methyl 5-methoxy-1,5-cyclohexadienylcarboxylate (1), directly followed by alkylation and hydrolysis leads to the corresponding cyclohexanones of type 2 (R, and R, trans) in moderate to high yield.

Short sequences to variously substituted cyclohexanones are of continuous synthetic interest. In connection with a novel entry into gibberellins² we investigated the potential use of methyl 5-methoxy-1,5-cyclohexadienylcarboxylate (1) for the synthesis of some 3-carbomethoxy-3,4-dialkylcyclohexanones (2) and wish to report now on the obtained results. In the proposed scheme, a one-step 1,4-addition (nucleophile R_1)/alkylation (electrophile R_2) sequence leads, after hydrolysis, to cyclohexanones of type $\underline{2}$.

Ester 1³ is obtained via Birch reduction of m-methoxybenzoic acid (under careful controlled conditions of reaction and work-up)⁴, directly followed by esterification (CH_2N_2) : 82 % isolated yield after rapid chromatography on silica gel (EtOAc:isooctane, 5:95)⁵.

From <u>1</u> high yields of cyclohexanones <u>5a</u> and <u>5b</u> are obtained in essentially one step when using phenylmagnesiumbromide/2,3-dibromopropene or propargylbromide in the 1,4-addition/alkylation sequence. In a typical experiment 1 is added to 1.5 eq of phenylmagnesium bromide in diethylether at -20 °C and, after reaction for 1-2 h at -20°C, treated successively with 15 eq of HMPA and 2.6 eq of the bromide; after 2 h at r.t., the mixture is worked-up with saturated NH_ACl /ether and the ether phase stirred with 2 N hydrochloric acid.

3287

Reaction products are isolated by rapid filtration over silica gel (EtOAc: isooctane, 3:7) and purified by recrystallization : 75 % isolated $\underline{5a}^6$ (m.p. 89°C) and 81 % $\underline{5b}^6$ (m.p. 117-118°C). Attempts at isolating the intermediate enolether (cf. <u>4</u>) by chromatography (silica gel, EtOAc:isooctane, 1:9) resulted in a moderate yield (45 %) of a mixture of $\Delta^{1,2}$ (cf. <u>4</u>) and $\Delta^{1,6}$ isomers⁷. The use of HMPA was found crucial for successful alkylation.

In a similar way the 1,4-addition of furyImagnesium iodide in ether and subsequent alkylation with 2,3-dibromopropene/HMPA gave $\underline{6a}^6$ in 46 % isolated yield. Whereas 2-iodofuran is available from 2-furoic acid via Hunsdiecker reaction⁸, a more convenient preparation involved the addition of iodine to furyllithium in THF or ether at -40°C and subsequent purification by distillation (70 %) : the thus obtained 2-iodofuran is reasonably stable, either neat or in solution (few days at r.t., several months at -20°C). For the purpose of preparing the Grignard derivative for subsequent 1,4-addition to $\underline{1}$, the crude solution of 2-iodofuran <u>in ether</u> can be used directly : thus, there was obtained from $\underline{1}$, after 1,4-addition and hydrolysis, a 40 % yield of $\underline{2}$ (R₁ = C₄H₃O; R₂ = H). In contrast, the same procedure in THF only led to trace amounts of conjugate adduct^{9,10}.

In contrast to the above results, no conjugate adduct could be isolated from the reaction of <u>1</u> with methylmagnesium iodide in ether⁹; lithium dime-thylcuprate addition (1.5 eq, ether), however, followed by alkylation with 2,3-dibromopropene and hydrolysis, gave $\underline{7a}^{6}$ (47 % isolated yield; m.p. 44-47°C).

In all cases only one diastereoisomeric alkylated adduct was isolated. The anticipated trans-orientation of R_1 and R_2 was proven by ¹H NMR and chemical correlation.

Reduction of 5a with sodium borohydride (CH₃OH, -40°C) gave alcohols $8a^6$ and $9a^6$ (ratio 35/65, quantitative). The equatorial (in 8a) and axial (in 9a) orientation of the alcohol group is clearly indicated by the H-l vicinal J-values (sum of 16 and 31 Hz, respectively); in both products, the equatorial position of the phenyl group is inferred from the J-values of H-4 (13.0 and 3.0 Hz for 8a; 11.2 and 3.0 Hz for 9a).

Finally, only <u>9a</u> gave rise to the corresponding lactone $(10a^6; m.p. 105^\circ C;$ benzene, p-TsOH, r.t., quantitative), hereby proving the stereochemistry of <u>5a</u>, <u>8a</u> and <u>9a</u>. Reduction of <u>6a</u> with K-selectride (THF, -78°C) led to lactone <u>10b</u> (m.p. 58°C, 15 % isolated) and alcohol <u>8b</u> (54 %) : analogous J-values for H-1 and H-4 again confirm the proposed structures.

Since conjugate additions to α,β -dialkylated unsaturated esters are known to proceed poorly in general¹¹, the α -vinylogous situation of the methoxy group in <u>1</u> must play a crucial role in the present reaction. With this respect it is interesting to note that upon reaction of phenylmagnesium bromide with the methyl ester of α -bromocrotonic acid only conjugate addition was observed¹². Furthermore, although no systematic study was undertaken so far with <u>1</u>, it seems likely that for a satisfactory conjugate addition in the absence of copper reagents an sp² nucleophile should be involved. Some applications of this short entry to cyclohexanes <u>2</u> (3 steps from m-methoxybenzoic acid) in natural product synthesis will be reported in due course.

Acknowledgments

We are indebted to the Nationaal Fonds voor Wetenschappelijk Onderzoek and the Ministerie voor Wetenschapsbeleid for financial support to the laboratory.

References and Notes

- 1. (a) Bursary of the I.W.O.N.L.; (b) Research Associate of the N.F.W.O.
- 2. See following paper in this issue.
- 3. A.J. Birch, A.J. Pearson, J. Chem. Soc., Perkin 1, 638 (1978).
- 4. M.E.C. Biffin, A.G. Moritz and D.B. Paul, Austr. J. Chem., <u>25</u>, 1329 (1972). The addition of Na to the reaction mixture should be performed rapidly in order to prevent overreduction to 3-methoxycyclohex-2-ene-1-carboxylic acid. On larger scales (e.g., 50 g acid), where rapid addition at -33°C becomes hazardous, Na is added to the liq NH₃ sln. at -78°C and, after addition, the sln. is stirred for 3 h at -33°C.
- 5. The ester obtained in this way is crystalline (m.p. 7°C) at low temperature : unless purified by chromatography no crystalline material is obtained and rapid decomposition takes place even at -20° C.

- 6. Satisfactory elementary analyses and spectral data were obtained. Relevant NMR data (CDC1, 360 MHz); 5a : 7.31, 7.09 (5H,m), 5.58 (1H,m), 5.53 (1H,m), 3.67 (3H,s), 3.08 (1H,dd; 12.5, 3.5 Hz), 3.02 (1H,d; 14.5 Hz), 2.96 (1H,dd; 15.5, 2.0 Hz), 2.65 (1H,ddt; 15.5, 4.5, 2.0 Hz), 2.55 (1H,d; 14.5 Hz) ppm. 5b : 7.30, 7.17 (5H,m), 3.65 (3H,s), 3.41 (1H,dd; 3.8, 12.5 Hz), 2.81 (1H,d; 15.0 Hz), 2.57 (1H,dd; 15.0, 2.0 Hz), 2.40 (1H, dd; 17.0, 2.5 Hz), 2.27 (1H,dd; 17.0, 2.5 Hz), 2.22 (1H,t; 2.5 Hz) ppm. 6a : 7.36 (1H, dd; 1.75, 0.75 Hz), 6.35 (1H,dd; 3.25, 2.0 Hz), 6.12 (1H,bd; 3.25 Hz), 5.66 (1H;bs), 5.60 (1H,d; 1.75 Hz), 3.63 (3H,s), 3.33 (1H,dd; 4.75, 9.0 Hz), 3.14 (1H,dd; 14.75, 1.0 Hz), 2.92 (1H,dd; 15.5, 2.0 Hz), 2.76 (1H,d; 14.75 Hz), 2.68 (1H,dtd; 15.5, 5.75, 1.75 Hz), 2.50 (1H,dd; 15.25, 1.0 Hz) ppm. 7a : 5.63, 5.57 (2H,m), 3.72 (3H,s), 3.26 (1H,dd; 14.5, 1.0 Hz), 2.77 (1H,dd; 15.5, 1.7 Hz), 2.62 (1H,d; 14.5 Hz), 2.07 (1H,ddq; 3.5, 10.5, 6.75 Hz), 1.09 (3H,d; 6.75 Hz) ppm. 8a : 7.27, 7.04 (5H,m), 5.56, 5.51 (2H,m), 4.57 (1H, vtt; Σ 31.0 Hz), 3.51 (3H,s), 3.12, 2.49 (2H, AB; 14.5 Hz), 2.60 (1H,dd; 13.0, 3.0 Hz), 2.55 (1H,ddd; 13.25, 4.75, 1.75 Hz), 1.32 (1H,dd; 13.25, 10.5 Hz) ppm. 8b : 7.31 (1H, dd; 0.6, 1.75 Hz), 6.30 (1H,dd; 3.25, 1.75 Hz), 6.04 (1H,bd; 3.25 Hz), 5.63 (1H,bs), 5.55 (1H,bs), 4.39 (1H,tt; 4.5, 10.0 Hz), 3.53 (3H,s), 3.33 and 2.72 (2H, AB; 14.75 Hz), 2.78 (1H,dd; 11.0, 4.5 Hz). 9a : 7.27, 7.09 (5H,m), 5.56, 5.53 (2H,m), 4.08 (1H,m; Σ 24 Hz), 5.34 (OH, bd; 8.0 Hz), 3.44 (3H,s), 3.22, 2.51 (2H, AB; 14.8 Hz), 2.67 (1H,dd; 11.2, 3.0 Hz), 2.45 (1H,ddd; 15.2, 4.0, 2.0 Hz), 1.82 (1H,dd; 15.2, 4.4 Hz) ppm. 10a: 7.28 (5H,m), 5.44, 5.38 (2H), 4.87 (1H,t; ~4.6 Hz), 2.89 (1H,dd; 10.5, 8.5 Hz), 2.63, 2.51 (2H, AB; 15.0 Hz), 2.77 (1H,ddd; 12.0, 6.25, 1.5 Hz), 2.09 (1H,d; 12.0 Hz) ppm. 10b : 7.31 (1H,dd; 1.75, 0.75 Hz), 6.33 (1H,dd; 3.5, 1.75 Hz), 6.21 (1H,bd; 3.5 Hz), 5.50 (2H,bs), 4.84 (1H,bt; 5.0 Hz), 3.08 (1H,dd; 13.0, 5.8 Hz), 2.72 and 2.64 (2H, AB; 14.5 Hz).
- 7. Even on prolonged standing at -20°C the $\Delta^{1,2}$ olefin isomerizes; ca 1/1 ratio after 2 weeks, as indicated by ¹H NMR (90 MHz) : δ (CDCl₃) 5.06 (bs) and 4.72 (m) for the $\Delta^{1,2}$ and $\Delta^{1,6}$ isomer, respectively.
- 8. H. Gilman, H.E. Mallory and G.F. Wright, J. Am. Chem. Soc., <u>54</u>, 733 (1932). 2-Iodofuran thus obtained (\sim 20 % yield in our hands) decomposes in a matter of minutes; solutions of the corresponding Grignard derivative, however, are stable for a few weeks.
- 9. A complex mixture was obtained, presumably originating from 1,2-reaction.
- Reports on 1,4-additions involving the 2-furan nucleus are scarce; for the successful reaction of 2-furylmagnesium bromide (catalyzed by CuCl) on 1-acetylcyclopentene in THF (15 % yield), see : A. Takeda, K. Shinhama and S. Tsuboi, J. Org. Chem., <u>45</u>, 3125 (1980).
- 11. G. Posner, Org. React., 19, 1 (1972).
- 12. J. Klein, S. Zitrin, J. Org. Chem., 35, 666 (1970).

(Received in UK 26 April 1982)