Catalytic enantioselective synthesis of sterically demanding alcohols using di(2° -alkyl)zinc prepared by the refined Charette's method[†]

Manabu Hatano,^a Tomokazu Mizuno^a and Kazuaki Ishihara*^{ab}

Received 9th May 2010, Accepted 3rd June 2010

First published as an Advance Article on the web 29th June 2010 DOI: 10.1039/c0cc01301c

A highly practical, catalytic enantioselective 2° -alkyl addition to aldehydes and ketones was developed. Chiral phosphoramide ligand (1) with salt-free and solvent-free di(2° -alkyl)zinc reagents prepared from (2° -alkyl)MgCl was essential.

A catalytic enantioselective dialkylzinc addition to aldehydes has been recognized as an effective method for synthesizing optically active secondary alcohols.¹ In particular, the 2°-alkyl addition to aldehydes with di(2°-alkyl)zinc reagents has become increasingly important in pharmaceutical chemistry and in Soai's autocatalysis with pyrimidine-5-carbaldehyde and *i*-Pr₂Zn.² However, in sharp contrast to the di(1°-alkyl)zinc addition to aldehydes, only a few limited examples of the di(2°-alkyl)zinc addition to aldehydes have been reported due to steric constraint.³ Moreover, the lack of a commercially available source of di(2°-alkyl)zinc other than i-Pr₂Zn has discouraged work on the desired catalytic enantioselective 2°-alkyl addition to aldehydes. Although convenient methods have been reported for the preparation of dialkylzinc reagents in situ, they are accompanied by the generation of monoalkylzinc complexes and/or inorganic salts, which sometimes disturb subsequent reactions.^{4,5} To address this serious problem,⁶ we report here a catalytic enantioselective 2°-alkyl addition to aldehydes and ketones with salt-free and solvent-free di-(2°-alkyl)zinc reagents that are prepared from Grignard reagents by using a refined Charette's method.⁷

Côté and Charette recently developed a highly useful method for the preparation of salt-free di(1°-alkyl)zinc reagents from ZnCl₂, NaOMe, and Grignard reagents.⁷ However, methods for the preparation of salt-free di(2°-alkyl)zinc reagents have not yet been well-established. First, the isopropylation of benzaldehyde (2a) was investigated with chiral phosphoramide ligand 1b⁸ (10 mol%) (Table 1). By following a Charette's typical procedure for the preparation of di(1°-alkyl)zinc,^{7,9} a 0.44 M solution of *i*-Pr₂Zn in Et₂O was prepared, but nearly racemic 3a was obtained in 88-90% yield under Et₂O conditions (entries 1 and 2). We assumed that a small amount of remaining Grignard reagent might trigger the racemic pathway, since a highly active zinc(II) ate complex for alkylation, namely [*i*-Pr₃Zn]⁻[MgCl]⁺, would be generated *in situ*.¹⁰ As expected, a conservative molar ratio of 1/2/1.6 of $ZnCl_2/$ NaOMe/i-PrMgCl was effective, and 3a was obtained in

 Table 1
 Optimization of the isopropylation of benzaldehyde^a

 $[ZnCl_2 + NaOMe + i-PrMgCl in Et_2O]$

 | rt for 2 h, then centrifugation

Entry	LICI2	•	1 ao Mie	•	<i>i</i> -i iivigei	[/0] 01 3a	01 34
1 ^b	1	:	2	:	1.9	90	3
2^b	1	:	2.5	:	1.9	88	0
$3^{b,c}$	1	:	2	:	1.6	73	91
4	1	:	2	:	1.6	93	91
5	1	:	2.5	:	1.6	94	94
6^d	1	:	2.5	:	1.6	93	93
7^e	1	:	2.5	:	1.6	84	92

^{*a*} Unless otherwise noted, salt-free *i*-Pr₂Zn was used under solvent-free conditions. ^{*b*} *i*-Pr₂Zn (0.44 M, in Et₂O) was used. ^{*c*} BnOH was obtained in 26% yield. ^{*d*} 10 mol% of ligand **1a** in place of **1b** was used. ^{*e*} 3 mol% of ligand **1a** in place of **1b** was used. Reaction time was 4 h.

73% yield with 91% ee (entry 3). However, an undesired reduction byproduct (i.e. BnOH) was also obtained in 26% yield (entry 3). Therefore, we examined the reaction under solvent-free conditions¹¹ by using salt-free liquid *i*-Pr₂Zn (bp. 134 °C),¹² which was prepared by the same method followed by the removal of Et₂O in vacuo. As a result, 3a was obtained in an improved yield (93%) with 91% ee, along with a trace amount of BnOH (<2%) (entry 4). Moreover, with the use of 2.5 equiv. of NaOMe,⁹ 3a was obtained in 94% yield with 94% ee (entry 5). Both less bulky 1b (10 mol%) and more bulky 1a (3 or 10 mol%) were effective in this reaction (entries 5-7). It was noted that Côté and Charette used (2S)-(-)-3-exo-(N-morpholino)isoborneol [(-)-MIB], which has been known as a representative chiral ligand,¹³ in their asymmetric 1°-alkylation to aldehydes.⁷ However, (-)-MIB was less effective than chiral ligand 1 in the isopropylation of 2a (See the ESI[†]).

We next examined the catalytic enantioselective 2°-alkyl addition to various aldehydes under solvent-free conditions with salt-free di(2°-alkyl)zinc reagents derived from Grignard reagents (Table 2). The isopropylation of aromatic aldehydes (entry 1), heteroaromatic aldehydes (entries 2 and 3), and cycloaliphatic aldehydes (entries 4 and 5) proceeded, and the corresponding products were obtained in high yields with high enantioselectivities (90–>99% ee). The isopropylation of tiglic aldehyde as an α,β -unsaturated aldehyde provided only a 1,2-adduct (**3g**) with high enantioselectivity (97% ee) (entry 6). Catalytic enantioselective *sec*-butylation also proceeded for

^a Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8603, Japan

^b Japan Science and Technology Agency (JST), CREST, Furo-cho,

Chikusa, Nagoya, 464-8603, Japan. E-mail: ishihara@cc.nagoya-u.ac.jp; Fax: +81-52-789-3331; Tel: +81-52-789-3222

[†] Electronic supplementary information (ESI) available: Experimental details and product characterization. See DOI: 10.1039/c0cc01301c

Table 2Enantioselective 2°-alkyl addition to aldehydes

[ZnCl ₂ + NaOMe + R I rt for (-Nat	MgCl (molar ratio = 1 : 2 2 h, then centrifugation OMe, -NaCl, -Zn(OMe)	2.5 : 1.6) in Et ₂ O] ₂ , –MeOMgCl)
	entration (-Et ₂ O) 1a (10 mol%)	он І
R' H 1 2211 2 (3 equiv)	solvent free, rt, 2 h	R' R 3
Vi	14	Viala

Entry	Product (3)	and ee	Entry	Product (3)		and ee
1 <i>a</i>	MeO	3b ^{95%} , 96% ee	10 ^b	OH ✓ ★ ↓	3k	90%, 99% ee
2 ^{<i>a</i>}	S OH	$3c \frac{>99\%}{95\%}$ ee	11 ^{<i>a</i>,<i>c</i>}	OH OH	31	89%, 97% ee
3	OH OH	$3d_{90\%}^{86\%}$ ee	12 ^{<i>a</i>,<i>c</i>}	CI OH	3m	96%, 90% ee
4	OH ✓ ↓	$3e \frac{>99\%}{96\%} ee$	13 ^c	OH OH	3n	94%, 84% ee
5 ^{<i>a</i>}	OH OH	$3f \frac{98\%}{>99\%}$ ee	14 ^{b,c}	→ → → → → → → → → → → → → → → → → → →	30	75%, 82% ee
6 ^{<i>b</i>}	OH I I I I I I I I I I I I I I I I I I I	$3g_{97\%}^{97\%}$, ee	15 ^c	OH C	3p	77% [36%] ^{<i>a</i>} , >99% ee
7	OH C C C C C C C C C C C C C C C C C C C	$\begin{array}{c} 76\%, \\ 3h \frac{(\mathrm{dr}\ 55/45)}{94\%\ \mathrm{ee}} \\ 95\%\ \mathrm{ee} \end{array}$) 16 ^{b,c}	OH *	3q	80%, 99% ee
8	OH	45% [15%] ^a , 3i (dr 59/41) 98% ee/ 96% ee) 17 ^c	J.	3r	85% 99% ee
9	OT *	3j ^{56%} , _{96% ee}	18 ^c	OH	3s	88% [42%] ^{<i>a</i>} , 98% ee

^{*a*} 10 mol% of ligand **1b** was used in place of **1a**. ^{*b*} Temperature was 0 °C. ^{*c*} Toluene (2.5 M) was used as a solvent.

the first time, and the desired products were obtained with a low diastereomeric ratio (ca. 6:4) but with high enantioselectivities (94-98% ee) (entries 7 and 8). Next, as an unprecedented cyclic 2°-alkyl addition to aldehydes, the addition of $(c-C_5H_9)_2$ Zn and $(c-C_6H_{11})_2$ Zn¹⁴ was explored. Fortunately, the desired products were obtained with high enantioselectivities from aromatic aldehydes (entries 11 and 12), heteroaromatic aldehydes (entries 9 and 13), cycloaliphatic aldehydes (entries 10 and 15), a β -branched aliphatic aldehyde (entry 14), an α -branched aliphatic aldehyde (entry 16), and α , β -unsaturated aldehydes (entries 17 and 18). Less bulky 1b was often less effective than more bulky **1a**⁸ due to reduction byproducts, especially when less-reactive aliphatic aldehydes were used (entries 8, 15, and 18). Some of the secondary alcohols (3, R'RCHOH) which have two similar cyclic and/or acyclic fragments (R' and R) can hardly be obtained via complementary methods such as asymmetric reduction of the corresponding ketones.¹⁵ In this catalysis, optically active novel secondary alcohols with similar R' and R were successfully obtained in high yields with high to excellent enantioselectivities (96 - > 99% ee).

To demonstrate the synthetic utility of this approach, several transformations were examined. Compound **3n** was treated with *N*-bromosuccinimide in THF–H₂O,¹⁶ and the desired cyclohexyl-substituted 6-hydroxy-2*H*-pyran-3-one **4**¹⁷ was obtained *via* the oxidative Achmatowicz rearrangement in 89% yield with a diastereomeric ratio of 73:27 with 84% ee (eqn (1), left). Moreover, after the TBS-protection of the hydroxy group of **3n**, ozonolysis cleavage of the furan ring provided α -alkoxy carboxylic acid **5**^{18,19} in 96% yield (eqn (1), right).

$$\begin{array}{c} OH \\ & & \\ O \\ O \\ \\ O \\ \\$$

By ozonolysis and subsequent Me₂S treatment,²⁰ allyl alcohol **3r** was converted to α -hydroxy ketone **6**²¹ in 98% yield with 99% ee (eqn (2)). This is synthetically important because compound **6** cannot be prepared directly from unstable methylglyoxal by alkylation. In the same way, α -hydroxy ketone 7 bearing a terminal formyl moiety was readily prepared from allyl alcohol **3s** in 86% yield with 98% ee (eqn (3), right). Moreover, the diastereoselective epoxidation of allyl alcohol **3s** with *m*-CPBA was examined (eqn (3), left).²² Fortunately, *syn*-epoxide **8**, which is a key intermediate in the synthesis of optically active 1,3-diols with three consecutive chiral carbon centers,²³ was obtained with a diastereomeric ratio of 76:24 with 97% ee (*syn*).

$$\frac{3r}{99\% \text{ ee}} \xrightarrow{\begin{array}{c}1) \text{ O}_{3}/\text{CH}_{2}\text{Cl}_{2}/\text{MeOH}}{2) \text{ Me}_{2}\text{S}, \text{ rt, 12 h}} \xrightarrow{\begin{array}{c}\text{OH}\\\text{O}\\\text{O}\end{array}} (2)$$

Finally, the 2°-alkylation of ketones in place of aldehydes was examined (Table 3).²⁴ Unfortunately, both isopropylation and cyclohexylation of acetophenone (9a) did not provide the desired products, and the mixture of undesired aldol product (11) and aldol condensation product (12) was obtained (entries 1 and 2). In sharp contrast, the isopropylation of 4'-(trifluoromethyl)acetophenone (9b) and 3',5'-bis(trifluoromethyl)acetophenone (9c) proceeded without aldol formation at 0 °C for 24 h in the presence of 10 mol% of ligand 1a, and the desired tertiary alcohols (10c and 10d) were obtained in moderate yield with >99% ee (entries 3 and 4). Furthermore, the cyclohexylation of 9b and 9c in the presence of 20 mol% of ligand 1a provided the desired products 10e and 10f in moderate to good yield with >99% ee (entries 5 and 6). To the best of our knowledge, this is the first example of catalytic asymmetric tertiary alcohol synthesis via di(2°-alkyl)zinc addition to ketones.25

In summary, we have developed a highly practical, catalytic enantioselective 2° -alkyl addition to aldehydes and ketones with salt-free di(2° -alkyl)zinc reagents. In this catalysis, refined Charette's reaction conditions using the molar ratio

Table 3 Enantioselective 2°-alkyl addition to ketones^a

(m	ZnCl ₂ + NaOMe olar ratio = 1 : 2.5	+ RMgCl : 1.6) in E	$\frac{\text{centrifugation}}{-\text{Et}_2\text{O}} \xrightarrow[(3]{}{\text{R}_2\text{Zn}} \frac{\text{1a (10 or 20)}}{(3 \text{ equiv})}$	mol%), ArC(=O)Me (9) rt, 24 h	$HO Ar R \begin{bmatrix} 0 \\ +Ar & Ar \end{bmatrix}$	OH O Ar
Entry	1a (mol %)	Produ	ct	Yield and ee of 10	Yield of 11 and 12	Recovery of 9
1 ^{<i>a</i>}	10	10a	(Ar = Ph, R = i - Pr)	0	84% (11a/12a = 2:3)	15%
2^{b}	20	10b	(Ar = Ph, R = c-Hex)	0	85% (11b/12b = 1:1)	14%
3 ^{<i>a</i>}	10	10c	$(Ar = 4 - CF_3C_6H_4, R = i - Pr)$	38%, >99% ee	<3%	59%
4^a	10	10d	$(Ar = 3,5-(CF_3)_2C_6H_3, R = i-Pr)$	40%, >99% ee	<3%	57%
5^b	20	10e	$(Ar = 4-CF_3C_6H_4, R = c-Hex)$	40%, >99% ee	<3%	57%
6^b	20	10f	$(Ar = 3,5-(CF_3)_2C_6H_3, R = c-Hex)$	56%, >99% ee	<3%	41%
^a Reacti	on was examined	under so	olvent-free conditions. ^b Reaction was e	examined under 2.5 M to	luene conditions.	

of 1/2.5/1.6 of ZnCl₂/NaOMe/RMgCl in the presence of chiral ligand **1** was essential. Moreover, solvent-free conditions were critical for minimizing undesired reduction byproducts. Optically active novel secondary alcohols could be transformed to synthetically useful γ -hydroxy- β -pyrone, α -alkoxy carboxylic acid, α -hydroxy ketone, and 2,3-epoxyalcohol.

Financial support was provided by JSPS. KAKENHI (20245022), MEXT. KAKENHI (21750094, 21200033), and the Global COE Program of MEXT. We are grateful to Tosoh Finechem Corp. for providing organometallic reagents.

Notes and references

- For reviews: (a) K. Soai and S. Niwa, Chem. Rev., 1992, 92, 833;
 (b) L. Pu and H.-B. Yu, Chem. Rev., 2001, 101, 757;
 (c) C. Bolm, J. P. Hildebrand, K. Muñiz and N. Hermanns, Angew. Chem., Int. Ed., 2001, 40, 3284;
 (d) M. Hatano, T. Miyamoto and K. Ishihara, Curr. Org. Chem., 2007, 11, 127.
- 2 K. Soai, T. Shibata, H. Morioka and K. Choji, *Nature*, 1995, **378**, 767.
- 3 (a) K. Soai, T. Hayase, K. Takai and T. Sugiyama, J. Org. Chem., 1994, **59**, 7908; (b) T. Hayase, T. Sugiyama, M. Suzuki, T. Shibata and K. Soai, J. Fluorine Chem., 1997, **84**, 1; (c) T. Shibata, H. Tabira and K. Soai, J. Chem. Soc., Perkin Trans. 1, 1998, 177; (d) M. Asami, H. Watanabe, K. Honda and S. Inoue, Tetrahedron: Asymmetry, 1998, **9**, 4165; (e) W. K. Yang and B. T. Cho, Tetrahedron: Asymmetry, 2000, **11**, 2947; (f) I. Sato, R. Kodaka, K. Hosoi and K. Soai, Tetrahedron: Asymmetry, 2002, **13**, 805.
- 4 (a) M. Schlosser, Organometallics in Synthesis, A Manual, Wiley, Chichester, 2nd edn, 2001; (b) H. Yamamoto and K. Oshima, Main Group Metals in Organic Synthesis, Wiley-VCH, Weinheim, 2004; (c) P. Knochel, Handbook of Functionalized Organometallics, Wiley-VCH, Weinheim, 2005.
- 5 Recent selected papers for preparation of dialkylzinc reagents: (a) P. Wipf and W. Xu, Tetrahedron Lett., 1994, 35, 5197; (b) B. H. Lipshutz, M. R. Wood and R. Tirado, J. Am. Chem. Soc., 1995, 117, 6126; (c) S. Berger, F. Langer, C. Lutz, P. Knochel, T. A. Mobley and C. K. Reddy, Angew. Chem., Int. Ed. Engl., 1997, 36, 1496; (d) C. Lutz, P. Jones and P. Knochel, Synthesis, 1999, 312; (e) C. Bolm, N. Hermanns, J. P. Hildebrand and K. Muñiz, Angew. Chem., Int. Ed., 2000, 39, 3465; (f) S. Dahmen and S. Bräse, Org. Lett., 2001, 3, 4119; (g) A. Rimkus and N. Sewald, Org. Lett., 2002, 4, 3289; (h) S.-J. Jeon, H. Li and P. J. Walsh, J. Am. Chem. Soc., 2005, 127, 16416; (i) J. G. Kim and P. J. Walsh, Angew. Chem., Int. Ed., 2006, 45, 4175; (j) L. Salvi, J. G. Kim and P. J. Walsh, J. Am. Chem. Soc., 2009, 131, 12483.
- 6 Recently, Harada *et al.* reported a catalytic enantioselective 1°-alkylation and arylation to aldehydes with Grignard reagent/ Ti(Oi-Pr)₄: (a) Y. Muramatsu and T. Harada, Angew. Chem., Int. Ed., 2008, **47**, 1088; (b) Y. Muramatsu and T. Harada, Chem.–Eur.

J., 2008, **14**, 10560; (*c*) Y. Muramatsu, S. Kanehira, M. Tanigawa, Y. Miyawaki and T. Harada, *Bull. Chem. Soc. Jpn.*, 2010, **83**, 19.

- 7 A. Côté and A. B. Charette, J. Am. Chem. Soc., 2008, 130, 2771.
- 8 (a) M. Hatano, T. Miyamoto and K. Ishihara, *Org. Lett.*, 2007, **9**, 4535; (b) M. Hatano, T. Mizuno and K. Ishihara, *Synlett*, in press.
- 9 Côté and Charette used a slight excess of Zn(OMe)₂ (2–2.5 equiv.) in relation to the Grignard reagent. See ref. 7.
- 10 (a) M. Hatano, S. Suzuki and K. Ishihara, J. Am. Chem. Soc., 2006, **128**, 9998; (b) M. Hatano, S. Suzuki and K. Ishihara, Synlett, 2010, 321.
- 11 P. J. Walsh, H. Li and C. A. de Parrodi, *Chem. Rev.*, 2007, **107**, 2503.
- 12 H. Soroos and M. Morgana, J. Am. Chem. Soc., 1944, 66, 893.
- MIB is an advantageous alternative to Noyori's DAIB [3-exo-(dimethylamino)isoborneol]: (a) M. Kitamura, S. Suga, K. Kawai and R. Noyori, J. Am. Chem. Soc., 1986, 108, 6071; (b) W. A. Nugent, Chem. Commun., 1999, 1369; (c) R. Rosner, P. J. Sears, W. A. Nugent and D. G. Blackmond, Org. Lett., 2000, 2, 2511.
- 14 Since $(c-C_6H_{11})_2$ Zn is viscous at room temperature, toluene (2.5 M) was used as a solvent.
- 15 Reviews and perspectives for catalytic asymmetric hydrogenation and transfer hydrogenation of ketones: (a) R. Noyori and S. Hashiguchi, Acc. Chem. Res., 1997, **30**, 97; (b) W. S. Knowles, Angew. Chem., Int. Ed., 2002, **41**, 1998; (c) R. Noyori, Angew. Chem., Int. Ed., 2002, **41**, 2008; (d) R. Noyori, M. Kitamura and T. Ohkuma, Proc. Natl. Acad. Sci. U. S. A., 2004, **101**, 5356; (e) W. S. Knowles and R. Noyori, Acc. Chem. Res., 2007, **40**, 1238.
- 16 K. Cheng, A. R. Kelly, R. A. Kohn, J. F. Dweck and P. J. Walsh, Org. Lett., 2009, 11, 2703.
- 17 N. L. Holder, Chem. Rev., 1982, 82, 287.
- 18 M. Kusakabe, Y. Kitano, Y. Kobayashi and F. Sato, J. Org. Chem., 1989, 54, 2085.
- 19 H. Gröger, Adv. Synth. Catal., 2001, 343, 547.
- 20 K. M. Miller, W.-S. Huang and T. F. Jamison, J. Am. Chem. Soc., 2003, 125, 3442.
- 21 (a) F. A. Davis and B. C. Chen, *Chem. Rev.*, 1992, 92, 919;
 (b) L. A. Paquette, S. V. O'Neil, N. Guillo, Q. Zeng and D. G. Young, *Synlett*, 1999, 1857; (c) P. Hoyos, J.-V. Sinisterra, F. Molinari, A. R. Alcántara and P. D. de María, *Acc. Chem. Res.*, 2010, 43, 288.
- (a) K. B. Sharpless and R. C. Michaelson, J. Am. Chem. Soc., 1973, 95, 6136; (b) C. M. Marson, A. J. Walker, J. Pickering, S. Harper, R. Wrigglesworth and S. J. Edge, *Tetrahedron*, 1993, 49, 10317.
- 23 A. H. Hoveyda, D. A. Evans and G. C. Fu, *Chem. Rev.*, 1993, 93, 1307.
- 24 A preliminary (-)-MIB catalysis in the isopropylation of **9b** did not proceed, and **10c** was not obtained (See the ESI[†]).
- 25 Synthesis of tertiary alcohols with 2°-nucleophiles: (a) K. Oisaki, D. Zhao, M. Kanai and M. Shibasaki, J. Am. Chem. Soc., 2006, 128, 7164; (b) F. Wang, X. Liu, Y. Zhang, L. Lin and X. Feng, Chem. Commun., 2009, 7297; see a review: (c) M. Hatano and K. Ishihara, Synthesis, 2008, 1647.