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Abstract—The JandaJEL™-supported bifunctional catalyst 3 (10 mol%) promoted the Strecker-type reaction of aromatic and
a,b-unsaturated imines in excellent yields with 83–87% ee in the presence of tBuOH (110 mol%). The reactivity of 3 was
comparable to the homogeneous analogue 1, and 3 could be recycled at least four times. © 2000 Elsevier Science Ltd. All rights
reserved.

The importance of immobilized asymmetric catalysts is
rapidly growing in view of easy separation of the
product and reusability of the catalyst.1 Solid-sup-
ported catalysts show considerable advantages over ho-
mogeneous ones, especially in large-scale syntheses and
high throughput organic chemistry. We have recently
reported an enantioselective Strecker-type reaction pro-
moted by the homogeneous bifunctional catalyst 1.2,3

The products were obtained with generally high ee
(70–95% ee) from a relatively wide range of substrates,
such as aromatic and aliphatic imines including a,b-un-
saturated imines. The origin of the high enantioselectiv-
ity and substrate generality is considered to stem from
the dual activation of the imine and TMSCN at the
defined positions by the Lewis acid (Al) and the Lewis
base (phosphine oxide) of the catalyst.4 Considering the
importance of catalytic enantioselective Strecker-type
reaction for providing various chiral amino acid precur-
sors in both laboratory and industrial scales, it is highly
desirable that the catalyst could be immobilized on a
solid phase and recycled many times.5 In this paper, we
disclose our initial success in this direction.

Since the high enantio-differentiation by the bifunc-
tional catalyst depends on the simultaneous activation
of substrate and reagent, it seemed important that the
polymer support should not affect the balance of the
activation ability of the Lewis acid and the Lewis
base. On the basis of preceding reports concerning
polymer-supported binaphthyl ligands,6 we designed
the polymer-supported catalysts 2 and 3 possessing a
sufficiently long spacer at the 6-position to avoid an
adverse effect of the spacer on the asymmetric envi-
ronment. Since the catalyst contains a Lewis acid
metal, a non-coordinating alkenyl linker was selected.
The syntheses of 2 and 3 are shown in Scheme 1.
After regioselective Friedel–Crafts acylation,6a the at-
tachment of the chiral ligand to the polymer was
achieved by Wittig reaction.7 The purity of the final
polymer-supported ligand was checked by 31P swol-
len-resin magic angle spinning (SR-MAS) NMR.8 The
loading of the ligand on polymers was determined
based on mass balance (1.02 mmol/g for 2 and 0.52
mmol/g for 3).
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Scheme 1. Reagents and conditions: (a) MeI, K2CO3, acetone, 92%; (b) ethyl 4-chloro-4-oxobutyrate, AlCl3, CH2Cl2, 80%; (c)
Pd/C, H2, CH3SO3H, AcOH/AcOEt/EtOH, 68%; (d) BBr3, CH2Cl2, 64%; (e) MOMCl, iPr2NEt, CH2Cl2; (f) LAH, THF, 76% (two
steps); (g) TBSCl, imidazole, DMF, 91%; (h) 1) BuLi (5 equiv.), Et2O, 2) DMF (6 equiv.), 61%; (i) NaBH4, MeOH, 98%; (j) 1)
MsCl, Et3N, CH2Cl2, 2) LiCl, DMF, 86%; (k) Ph2P(O)H (3 equiv.), NaOtBu (3.3 equiv.), THF, 100%; (l) TBAF, THF, 89%; (m)
(COCl)2, DMSO, Et3N, CH2Cl2, 94%; (n) 1) 12 (1 equiv.), KHMDS (5 equiv.), THF–toluene, rt, 4 h, 2) wash with THF, 3) 11
(1.5 equiv.), THF, −78°C to rt, 15 h, 4) acetaldehyde (capping); (o) TsOH·H2O, CH2Cl2–MeOH, 40°C.

Using the homogeneous catalyst 1, we have found that
addition of a proton source was necessary to enhance
the reaction rate.2 The best proton source was PhOH,
although other alcohols gave only slightly lower enan-
tioselectivity. Our rationale for the additive effect is that
it should protonate the anionic nitrogen generated by
the addition of the cyanide to the imine, thus facilitating
the ligand exchange on the catalyst. Since PhOH should
be partially regenerated from TMSOPh and the product
amine, only a catalytic amount (20 mol%) of PhOH was
sufficient to give the products with the same ee as with
110 mol% of PhOH. So, we first investigated the effect
of the protic additives, using the Merrifield resin-sup-
ported catalyst 2. As shown in Table 1, applying the
best reaction conditions to benzaldehyde imine 4a, us-
ing 2 (10 mol%), the product 5a was obtained in 83%
yield with 65% ee (entry 2). However, when a stoichio-
metric amount of PhOH (110 mol%) was used, the ee
became significantly lower (43%, entry 3). Another
different tendency from the homogeneous catalyst 1 was
observed when an aliphatic alcohol was used (entries
4–6). The ee was improved up to 78% using 110 mol%
of tBuOH as a proton source (entry 6).9 These different
tendencies between the homogeneous catalyst 1 and

polymer-supported 2 might be explained as follows. The
protic additive should partly react with TMSCN to
generate HCN.10 In the case of the reaction promoted
by the homogeneous catalyst 1, the reactivity of HCN
toward the imines was considerably lower than that of
TMSCN, since only TMSCN could be activated by the
Lewis basic phosphine oxide of 1.2 However, in the case
of the polymer-supported catalyst 2, the reactivity dif-
ference between HCN and TMSCN is not so significant
any more, possibly due to the hindered accessibility of
TMSCN to the phosphine oxide by the bulky polymer
core. We have confirmed that the reaction using HCN
proceeded with the similar rate as TMSCN in the
presence of 2. Compound 5a was obtained in 41% yield
in 30 h with 0% ee by HCN (versus 50% yield with
TMSCN-ROH, entries 4, 5). Therefore, the difference
of the ee of the product, depending on the proton
source, could possibly stem from the amount of HCN
in the reaction mixture. The more acidic PhOH should
generate a higher amount of HCN than tBuOH. As a
result, the competitive racemic pathway by HCN should
become more problematic, especially in the case when a
stoichiometric amount of PhOH was used. From these
results, we expected that, if the phosphine oxide of the
catalyst becomes more accessible to TMSCN, the

Table 1. Optimization of the reaction conditions using benzaldehyde imine 4a

Temp. (°C) Yield (%) Ee (%)Entry Time (h)Catalyst Catalyst synthesis Proton source (mol%) Reaction

92 951 1 – PhOH (20) – −40 44
6583432 2 −40Stir PhOH (20) Stir

43 913 2 Stir PhOH (110) Stir −40 43
30 504 2 Stir MeOH (110) Stir −40 71

71305 502 −40Stir iPrOH (110) Stir
−40 64 866 2 Stir tBuOH (110) 78Stir

5516167 2 −40Stir tBuOH (110) Shake
18 168 2 Shake tBuOH (110) Stir −40 18
86 159 2 Shake tBuOH (110) Shake −40 86

−50 60 9810 3 Stir tBuOH (110) 87Stir
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Table 2. Catalytic enantioselective Strecker-type reaction of various iminesa

2 1b3

Yield (%) Ee (%) Time (h) Yield (%) Ee (%) Time (h) Yield (%) Ee (%)ProductEntry Time (h)Imine (R)

64 86 78 44 9298 9587605a4a (Ph)1
– – – –2 –4b (p-MePh) –5b 64 100 83
85 74 80 44 9285 9559 983 4c (p-ClPh) 5c

834d (p-MeOPh) 85 85 62 44 93 935d 41 984
645 814e (3-Furyl) 76 44 92 905e 66 97 86
86 55 53 41 8083 96966 4f ((E)-PhCH�CH) 5f 66

a The reaction was performed at −50°C using 3, and −40°C using 2 or 1.
b See Ref. 2 for details.
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Figure 1. SEM pictures of the resin. A. Resin prepared by
stirring. B. Resin prepared by shaking.

Table 3. Recycle of 3a

Ee (%)Yield (%)Time (h)Cycle

981 8760
442 95 81
443 78 83

80974 110
835 77204

a 4a was used as substrate.

promoted by the JandaJEL™-supported bifunctional
catalyst 3 are summarized in Table 2.15 In all cases, 3
was more reactive and gave higher enantioselectivities
than 2. Although 3 was slightly less enantioselective
than homogeneous 1, the reactivity was almost com-
parable. The sense of enantioselection was the same as
for the homogeneous catalyst 1, indicating that the dual
activation of the imine and TMSCN by the Lewis acid
metal (Al) and the phosphine oxide should take place,
also in the case of the polymer-supported catalyst 3.
However, using aliphatic pivaladehyde imine, the ee of
the product was significantly lower (20% ee) compared
to 1 (78% ee), which should be the target of the future
investigation.

Finally, we found that 3 could be recovered and recy-
cled at least four times (Table 3), even though the
macroscopic structure of the polymer was broken.16,17

In conclusion, we have succeeded in immobilizing the
Lewis acid–Lewis base bifunctional catalyst 1 on poly-
mer support. Both of the macroscopic and molecular
structures of the polymer had a profound effect on the
reactivity and enantioselectivity. Using JandaJEL™
and a catalyst preparation method under stirred condi-
tions, the catalyst center became more accessible and
the highly enantioselective dual activation pathway in
which TMSCN acted as the nucleophile became pre-
dominant. Moreover, the catalyst was recyclable. Fur-
ther studies to extend this methodology to a practical
large-scale synthesis are underway.
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