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Abstract: A synthesis of the protected ene-tetrol unit 2 present in the marine metabolite amphidinolide 
A 1. starting from the protected D-glucopyranoside 3, and proceeding via the key intermediates 4, 5, 6 
and 7 is described. © 1998 Elsevier Science Ltd. All fights reserved. 

The amphidinolides are marine natural products produced by dinoflagellates of the genus Amphidium. 1,2 

Several of their number show pronounced toxicity against various tumor cell lines. I Amphidinolide A 1 was the 

first of the series to be isolated and characterised. 3 The compound shows a structure based on a 20-membered 

macrolactone which incorporates three exo-methylene groups and four uniquely positioned hydroxy groups 

forming a hydrophilic sector in the molecule. As a result of our interests in developing the scope for Pd(0)- 

mediated carbon-to-carbon coupling reactions in macrocycle constructions, we have earlier described a strategy to 

the polyene macrolactone core in amphidinolide A involving the sp2-(vinyl)-sp3-(alkyl) intramolecular coupling 

sequence depicted in the retrosynthetic analysis shown in Scheme 1.4 In further studies towards a total synthesis 

of 1 5 we now describe a concise synthesis of the novel ene-tetrol portion 2 appropriately functionalised for later 

elaboration, by suitable sp2-sp 3 coupling reactions, to the target natural product. 
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Scheme I 

Consideration of the high concentration of stereodefined hydroxy functionality in the fragment 2 suggested 

that a suitable derivative of D-glucose would make an ideal starting material; such a compound is available in the 

protected methyl tx-D-glucopyranoside 3 which is a known compound. 6 The plan was to convert this precursor 

into the aldehyde 5 via the alkene 4, then introduce the second extra carbon by addition to the aldehyde function 

in 5, leading to 6, and finally open the ring in the pyranoside 6 to reveal the acyclic tetrol precursor 7. 
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Thus, oxidation of the glucopyranoside 36 under Swern conditions first gave the ketone 87 which was then 

converted into the corresponding alkene 4 in 90% yield on treatment with the "Lombardo reagent ''8 produced 

from dibromomethane, zinc dust and titanium tetrachlodde (Scheme 2). The p-methoxybenzyl group protection 

in 4 was next removed selectively using eerie ammonium nitrate, 6 and the resulting alcohol 9 was then smoothly 

oxidised under Swern conditions leading to the [let-unsaturated aldehyde 5. We then needed a synthetic 

equivalent of the -CH2OH synthon to add to 5 in order to elaborate 11 in a diasteroospecific manner. This was 

achieved using the Grignard reagent derived from (chloromethyl)dimethyl(phenylthiomethyl)silane, first 

developed by van Boom and co-workers. 9 Thus treatment of 5 with this Grignard reagent gave rise to the silyl 

alcohol 10, as a single diastereoisomer, in 68% yield. Oxidative cleavage of the carbon-to-silicon bond in 10, 

using hydrogen peroxide in the presence of selenium dioxide under the conditions of Tamao l0 modified by van 

Boom, 9 then gave the vicinal diol 11 in 73% yield. 

The primary hydroxyl group in 11 was next protected as its t-butyldiphenylsilyl ether 6, in readiness for the 

key pyranoside ring opening step. Under optimum conditions, when the pyranoside 6 was treated with propane- 

1,3-dithiol (4 equivalents) in the presence of boron trifluoride etherate (3 equivalents) at 0°C for 0.5 h II a 28% 

yield of the dithiane 7 could be secured together with 35% recovered pyranoside which could be recycled. 12 

The acyclic precursor 7 was now elaborated to the aldehyde 12 via formation of the acetonide and 

deprotection of the dithiane group; no racemisation of the centre adjacent to the aldehyde function in 12 was 

observed under the conditions used. Treatment of 12 with methylcerium choride 13 next led to the corresponding 

secondary alcohol, which was then oxidised to the corresponding ketone 13 in quantitative yield using Dess- 

Martin periodinane. The synthesis of the vinyl triflate target compound 2 was then completed following treatment 

of the ketone 13 with lithium diisopropylamide and then with N-phenyltrifluoromethanesulphonimide. 14 Further 

studies are now in progress to complete a synthesis of amphidinolide A by judicious use of appropriate inter- and 

intra-molecular sp2-sp 3 coupling reactions involving precursors based on the vinyl triflate 2 and the other 

intermediates shown in Scheme 1. 
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Reagents: i, DMSO, (COCI)2, Et3N, 95%; ii, Zn, CH2Br 2, TiCI4, 90%; iii, CAN, 72%; iv, DMSO, (COCI) 2, Et3N, 90%; 
v, PhSCH2SiMe2CHiMgCl, 68%; vi, H202, SeO2, KHCO~ KF, 73%; vii, TBDPSCI, Et3N, DMAP, 83%; viii, HS(CH2)3SH, 
BF3,OEt2, 28%; ix, (MeO)2CMe2, TsOH, 98%; x, Met CaCO 3, 98%; xi, MeCeCI 2, 42%; xii, Dess-Mallin pedodinane 
100%; xiii, LDA, PhNTf 2, 82% 

Scheme 2 
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