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The antitumor antibiotic leinamycin contains an unusual 1,2-dithiolan-3-one 1-oxide heterocycle that 

appears to be intimately involved in the thiol-dependent cleavage of DNA by this natural product, l We have 

recently shown that, similar to leinamycin, several simple 1,2-dithiolan-3-one 1-oxide derivatives, including 

3H-1,2-benzodithiol-3-one 1-oxide (1), 2 are thiol-activated DNA-cleaving agents. 3 Our results indicate that 

simple 1,2-dithiolan-3-one 1-oxides, in concert with thiols, convert molecular oxygen to DNA-cleaving 

oxygen radicals. 3 Chemical model studies examining the reaction of 1 with thiols have been reported, 4 but the 

detailed chemical mechanisms of DNA cleavage by this class of compounds remain under investigation. 

We describe here reactions of  1 with amines and anilines that may have relevance to the biological 

chemistry of 1,2-dithiolan-3-one 1-oxides. These reactions lead to formation of a stable bond between 

nitrogen nucleophiles and 1 under mild conditions, thereby suggesting that covalent adducts might result from 

reaction of 1,2-dithiolan-3-one l-oxides with nucleophilic nitrogens in DNA, RNA and proteins. 5 In a 

separate context, the work described here offers a new method for the preparation of 1,2-benzisothiazolin- 

3(2H)-ones, a class of compounds that is of  widespread interest due to their potential as pharmaceuticals. 6 A 

number of other synthetic routes to 1,2-benzisothiazolin-3(2H)-ones have been reported. 6,7 
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Yield 
2a R = -CH2CH2Ph 60% 
2b R = cyclohexyl 39% 
2c  R = p-methoxyphenyl 68% 
2d R = p-methylphenyl 64% 
2e R = H  55% 
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Treatment of 1 with primary nitrogen nucteophiles or ammonia as shown in Scheme 1 results in a 

rapid reaction that yields substituted 1,2-benzisothiazolin-3(2H)-ones (2, Scheme 1). 8 This reaction appears 

to be rather general; alkylamines, anilines and ammonia react with 1 to afford the corresponding 

benzisothiazolinone derivatives (2a-2e, Scheme 1). Two 1,2-benzisothiazolin-3(2H)-ones (2a and 2¢) 

prepared by this method have been characterized by X-ray crystallography and spectroscopic data for 

compounds 2b-d agrees with that in the literature. 7 Examination of a series of substituted anilines revealed 

that this reaction does not extend to derivatives bearing electron withdrawing groups (e.g. p-nitroaniline, p- 

aminobenzonitrile); such compounds do not react with 1 at reasonable rates under the conditions described 

here. 

Figure 1. X-Ray Crystal Structures of 2a (left) and 2¢ (right). 

Although the mechanism for the formation of 1,2-benzisothiazolin-3(2H)-ones in these reactions is not 

certain, we envision attack of nitrogen on the carbonyl group of I leading to expulsion of elemental sulfur s 

and transient formation of 2-(carbamoyl)benzenesulfenic acid 3a. Similar mechanisms involving extrusion of 

elemental sulfur have been postulated, for example, in the reactions of 1,2-dithiole-3-thiones with 

nucleophiles. 9 Sulfenic acids such as 3 are generally unstable species l° and intramolecular dehydrative 

cyclization of the amide nitrogen onto the sulfenic acid group can reasonably be expected to yield the 

observed 1,2-benzisothiazolin-3(2H)-one product. This cyclization is analogous to the dehydrative 

dimerization reaction that is characteristic of sulfenic acids. 10,11 

O 

3a, Rl= H, Ar, or alkyl, R2= H 

3b, R1 and R2 = n-propyl 

In accord with the mechanism proposed above, we find that reaction of the secondary amine 

dipropylamine with 1 yields as a major product thiosulfinate 4 (25%, Scheme 2). 12 We suggest that attack of 

dipropylamine on the carbonyl group of 1, similar to the proposed mechanism for monosubstituted amines and 

anilines, yields the intermediate sulfenic acid 3b. This sulfenic acid, unable to yield a stable 1,2- 

benzisothiazolin-3(2H)-one product by intramolecular cyclization, presumably undergoes dehydrative 

dimerization to give the observed thiosulfinate product (4). 
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The reactions reported here may be useful for the preparation of certain 1,2-benzisothiazolin-3(2H)- 

ones. Furthermore, this chemistry is of interest as it may relate to the biological properties of 1,2-dithiolan-3- 

one 1-oxides. Future studies will reveal whether this chemistry serves as a model for the reaction of 1,2- 

dithiolan-3-one 1-oxides with nitrogen nucleophiles in biological macromolecules. 
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