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Monoamine oxidase (MAO, EC 1.4.3.4) is a flavin-containing 
enzyme that catalyzes the oxidative deamination of a variety 
of amine neurotransmitters and xenobiotics. Evidence for an 
initial one-electron transfer between the substrate and the 
enzyme to give an aminyl radical or radical cation (1, Scheme 
1) has been provided from numerous studies with radioactively- 
labeled cyclopropylamine,' cyclobutylamine analogues,2 and 
~ilylamines.~ (Aminomethy1)cubane was designed as a probe 
to differentiate deprotonatiodsecond electron transfer (pathway 
a) from hydrogen atom transfer (pathway b),4 and on the basis 
of the metabolites isolated and the observation of enzyme 
inactivation, deprotonation to 2 was concluded to be reasonable. 
Recently, a nucleophilic mechanism for the oxidation of amines 
by MA0 was proposed (Scheme 2),5 but, on the basis of the 
above-cited studies and the ability of MA0 to oxidize highly 
sterically-hindered amines, it was suggested that this mechanism 
is highly unlikely.6 In the nucleophilic mechanism, following 
addition to the flavin, the a-proton of the substrate is removed 
by an active site base. This may generate carbanionic character 
at the a-carbon or should, at least, permit @-elimination if an 
appropriately-substituted group were appended. In this com- 
munication we describe studies with cinnamylamine 2,3-oxide, 
which was designed to test whether ,&elimination occurs. 

The rearrangement of 1 -substituted 2,3-epoxy-3-phenylpropyl 
radical (Scheme 3, 3, R = Me or Ph) was found to give only 
the vinyl ether product? corresponding to cleavage exclusively 
of the C-C bond (pathway a); no products from cleavage of 
the C-0  bond (pathway b) were detected. When the cor- 
responding carbanion was generated, however, exclusive C-0  
bond cleavage was observed; no C-C bond cleavage was 
detected.' Therefore, cleavage of the C-0 bond of the epoxide 
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is good evidence for a carbanion-like mechanism (either E2 or 
ElcB); C-C bond cleavage is consistent with a radical pathway. 
As a probe for the intermediacy of a carbanion-like intermediate 
in MA0 B substrate oxidations, which would signal the 
possibility of a nucleophilic mechanism (Scheme 2), cinnamyl- 
amine 2,3-oxide hydrochloride (4, Scheme 4)* was tested as a 
substrate. Compound 4 was found to be both a very good 
substrate (Km = 0.55 mM; kcat = 71 min-') and an inactivator 
(Kr = 0.11 mM; kinact = 0.055 min-l) of MA0 B9 (partition 
ratio 1290). Inactivation was protected by substrate.'O Three 
metabolites were detected and identified,' two directly by 
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(1 1) In a control experiment, it was found that cinnamaldehyde 2.3-oxide 
reacts with hydrogen peroxide to give benzaldehyde. Hydrogen peroxide, 
a byproduct of the oxidation of amines by M A 0  (the reduced flavin is 
reoxidized by 0 2 ,  which is converted to H202). can be destroyed by the 
enzyme catalase. Consequently, it was shown that the addition of catalase 
(0.11 pg, 2.8 unitlpg) prevented the decomposition of cinnamaldehyde 2,3- 
oxide by hydrogen peroxide. To avoid the possible formation of benzal- 
dehyde as a result of hydrogen peroxide decomposition of cinnamaldehyde 
2,3-oxide, all metabolite studies were carried out in the presence of an excess 
of catalase. A control in which cinnamaldehyde 2,3-oxide was substituted 
for 4 in the presence of M A 0  and catalase (to which hydrogen peroxide 
was added to mimic the conditions of the enzyme reaction) produced no 
benzaldehyde. Therefore, all of the benzaldehyde that we observed in our 
enzyme studies comes from cinnamylamine 2,3-oxide, not from cinnam- 
aldehyde 2,3-oxide. 
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HPLC and one after derivatization. The two metabolites 
identified directly were cinnamaldehyde 2,3-oxide (6)'* and 
benzaldehyde (7) (the ratio of 6:7 = 110); no cinnamaldehyde 
was detected. Following Centricon filtration of the inactivated 
enzyme, the filtrate was treated with 2,4-dinitrophenylhydrazine 
solution and was heated to 70 "C for 1 h.I3 HPLC showed that 
the osazone, the 2,4-dinitrophenylhydrazone of glyoxal (OHC- 
CHO), which forms by oxidation of glycolaldehyde (8) to 
glyoxal followed by deri~atization,'~ and the 2,4-dinitrophen- 
ylhydrazone of benzaldehyde were produced; no 2,4-dinitro- 
phenylhydrazone of cinnamaldehyde or of any other compound 
was detected. When the enzyme reaction was repeated with 
cinnamaldehyde 2,3-oxide instead of 4, no benzaldehyde was 
detected;' therefore, benzaldehyde is not the product of 
hydrolysis of cinnamaldehyde 2,3-oxide. 

Cinnamaldehyde, which was shown to be stable under the 
conditions of the enzyme experiment, could be formed by a 
C-0 bond cleavage from a nucleophilic addition mechanism 
as shown in Scheme 5. From intermediate 10 it is reasonable 
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to assume that, at least, some cleavage of the epoxide would 
occur. The inability to detect the formation of any cinnamal- 
dehyde is evidence against this nucleophilic pathway. It is 
interesting that trans-2-phenylcyclopropylamine, the carbon 
isostere of cinnamylamine 2,3-oxide, is a substrate for MA0 B 
that does not undergo cyclopropyl ring ~1eavage.l~ This may 
be the result of different orbital alignment for the two molecules 
in the active site of MAO, possibly resulting from hydrogen 
bonding with the epoxide nonbonded electrons, such that the 
epoxide cleavage is favored over that for the corresponding 
cyclopropane analogue. 

Inactivation is thought to be the result of the formation of 9 
(Scheme 4). This adduct should be relatively stable at high 
pH and less stable at low pH. Dialysis of the inactivated enzyme 
in different pH buffers for 20 h resulted in the recovery of 14% 
of enzyme activity at pH 9, 19% at pH 7, and 45% at pH 5, 
consistent with structure 9. Furthermore, treatment of the 
inactivated enzyme with acidic 2,4-dinitrophenylhydrazine gave 
the expected decomposition products of 9, namely, the hydra- 
zones of benzaldehyde and glyoxal.16 

In summary, these studies provide further evidence against a 
nucleophilic mechanism for MAO-catalyzed amine oxidation. 
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