Eine milde Sulfenylierungsmethode für aktive Methylen-Verbindungen¹

A. SENNING

Chemisches Institut der Universität Aarhus, DK-8000 Århus C, Dänemark

Die Sulfenylierung aktiver Methylen-Verbindungen spielt in der synthetischen organischen Chemie eine wichtige Rolle bei der Funktionalisierung einfacher Ausgangsverbindungen^{2,3}. Als Sulfenylierungsreagenzien werden u. a. Thiolsulfonate verwendet, wobei in allen bekannten Fällen in Anwesenheit starker Basen gearbeitet werden muß. Wir fanden, daß das aus Thiophosgen und Natrium-benzolsulfinat erhältliche S-(Bis[phenylsulfonyl]-methyl)-benzolthiosulfonat^{4,5} (1) eine Reihe von aktiven Methylen-Verbindungen (2) bereits in Abwesenheit von Base in durchwegs befriedigenden Ausbeuten α-sulfenyliert nach der stöchiometrischen Gleichung:

Die so erhaltenen Sulfide (3a-g) sind in der Tabelle zusammengefaßt. Eine entsprechende Umsetzung von 1 mit Campher (in Benzol) gelang nicht.

Die I.R.- und ¹H-N.M.R.-Spektren der Verbindungen 3a-g entsprechen den Erwartungen. Die in der Tabelle angegebenen Ausbeuten sind nicht optimiert.

0039-7881/80/0532-0412 \$ 03.00

© 1980 Georg Thieme Verlag · Stuttgart · New York

Tabelle. Sulfide 3a-g

3	R	X ¹	X ²	Ausbeute [%]	F [°C]	Summenformel*	'H-N.M.R. (CDCl ₃ /TMS) δ _{CH} ^b [ppm]
a	CH ₃	Н	Н	67	150.2-151.0°°	$C_{16}H_{16}O_5S_3$ (384.5)	5.40
b	(CH ₂) ₃	_	H	33	113.1-118.5° c	$C_{18}H_{18}O_5S_3$ (410.5)	5.94
c	(CH ₂) ₅	-	Н	31	165.5-171.7°°	$C_{20}H_{22}O_5S_3$ (438.6)	5.41
d	CH_3	CH ₃	Н	60	165.5-171.0° c	$C_{18}H_{18}O_6S_3$ (426.5)	5.00
e	i-C ₃ H ₇	CH ₃	CH ₃	62	120.7-125.4° c	$C_{20}H_{24}O_5S_3$ (440.6)	5.53
f	C_6H_5	Н	Н	68	163.8-166.6° c	$C_{21}H_{18}O_5S_3$ (446.6)	5.47
g	$-OC_2H_5$	$-COOC_2H_5$	Н	66	167.4-169.2° d	$C_{20}H_{22}O_8S_3$ (486.6)	5.72

^a Die Mikroanalysen stimmten zufriedenstellend mit den berechneten Werten überein: C, ±0.35; H, ±0.25; S, ±0.26.

1-(Bis[phenylsulfonyl]-methylthio)-alkyl-ketone (3a, b, c, e, f), 3-(Bis[phenylsulfonyl]-methylthio)-2,4-pentandion (3d), Diethyl-(bis[phenylsulfonyl]-methylthio)-malonat (3g); allgemeine Arbeitsvorschrift:

Ein Gemisch von S-(Bis[phenylsulfonyl]-methyl)-benzolthiosulfonat $^{4.5}$ (1; 4.68 g, 0.01 mol) und der aktiven Methylen-Verbindung (2; 50 ml) wird bei 50 °C so lange gerührt (\sim 2 h), bis sich dünnschicht-chromatographisch (Silicagel, Laufmittel: Ether/Petrolether, 1:1) Verbindung 1 nicht mehr nachweisen läßt. Das Solvens wird am Rotationsverdampfer abgezogen und der Rückstand mit Ether angerieben, wobei Kristallisation eintritt. Das Produkt wird abgesaugt und aus Ethanol (3a-f) oder Acetonitril (3g) umkristallisiert.

Eingang: 15. Oktober 1979

0039-7881/80/0532-0413 \$ 03.00

^b $(C_6H_5-SO_2)_2CH-S-C(X^1)(X^2)-CO-R$.

c Aus Ethanol.

d Aus Acetonitril.

¹ Vorläufige Mitteilung: A. Senning, *Phosphorus and Sulfur* **6**, 275 (1979).

² B. M. Trost, Acc. Chem. Res. 11, 453 (1978).

³ B. M. Trost, Chem. Rev. 78, 363 (1978).

⁴ N. H. Nilsson, A. Senning, Chem. Commun. 1970, 658.

⁵ N. H. Nilsson, A. Senning, Org. Prep. Proced. Int. im Druck (1980).