DOI: 10.1002/ejoc.201300767

Synthesis of Linear Aza and Thio Analogues of Acetogenins and Evaluation of Their Cytotoxicity

Piret Villo,*^[a] Lauri Toom,^[a] Elo Eriste,^[a] and Lauri Vares*^[a]

Keywords: Natural products / Asymmetric synthesis / Kinetic resolution / Enantioselectivity / Cytotoxicity

We report the stereoselective synthesis of thio and aza analogues of Annonaceous acetogenins. The synthetic route allows easy variation of the stereochemistry and of the thioand aza-fragments. Kinetic resolution of terminal bis-epoxides was used to set two remote stereocentres with high enantio- and diastereoselectivities in one step. The cytotoxicity of the analogues was assessed using the HeLa cell line.

Introduction

The Annonaceous acetogenins are a very interesting class of biologically active natural products that show cytotoxic and immunosuppressive effects.^[1] They include one of the most potent inhibitors of NADH-ubiquinone oxidoreductase (complex I) from the mitochondrial electrontransport system, as well as inhibitors of NADH oxidase of plasma membranes of cancer cells that interrupt the intracellular synthesis of ATP.^[2] Natural acetogenins are found in species belonging to the tree family Annonaceae in the Magnoliales order, native to tropical and sub-tropical regions.^[3,4] Since the first acetogenin, Uvaricin (Figure 1), was isolated,^[5] acetogenins have been under increasing scientific attention, and to date, more than 400 members of this class of compounds have been isolated. The acetogenins are characterized by an unbranched fatty acid chain that is normally terminated by a butenolide moiety, and one to three THF (or THP) rings with adjacent hydroxy groups in the central region of the hydrocarbon chain.^[6] Due to their potent biological activities, especially the selective cytotoxicity against tumour ells, the synthesis of acetogenins and their derivatives are the subject of increasing interest.^[7] Although structure-activity relationships need to be refined, some structural features have been shown to be necessary for their biological activity. The central region with flanking OH-groups is thought to play an important role, and it has also been shown that the hydrocarbon chain that connects the central region with the butenolide moiety has an optimal length of 13 carbon atoms for a strong inhibition effect.^[8] Whether or not the butenolide is necessary, or whether it can be replaced by a structurally similar moiety is under debate.^[9] Continued studies of the acetogenins and their analogues will hopefully further clarify their mode of action. Based on the results of many promising in vitro assessments, and also of in vivo studies in mice^[10] and insects,^[11] the acetogenins are considered to be a promising group of compounds in the search for new drug leads.

It has been reported that when the acetogenin structure is simplified by replacing the THF unit with a linear moiety containing heteroatoms, the biological activities of the simplified structures are comparable with those of the natural compounds. Various linear acetogenin analogues have been synthesized in which the THF units have been substituted for polyether units,^[12] hydroxy groups,^[13] or amine-containing moieties.^[14] For example, Zhu-Jun Yao and co-workers have reported the synthesis of analogues containing a polyether unit^[15] (I; Figure 2), and a bis-amide unit^[16] (II). Both

Figure 1. Uvaricin.

- [a] Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia E-mail: piret.villo@ut.ee lauri.vares@ut.ee http://www.tuit.ut.ee/140999
- Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/ejoc.201300767.

of these compounds have cytotoxicities comparable to known anti-cancer agents. Also, in the case of analogue **I**, the presence of the hydroxy group at C-4 clearly enhanced the biological activity compared to when it was absent.

This inspired us to explore the enantioselective synthesis of linear aza analogues 1-4 (Figure 3) with a hydroxy group

Figure 2. Examples of non-THF acetogenin analogues.

Figure 3. Synthesized aza and thio analogues 1-6.

at C-4, and to assess their cytotoxicities. Thio analogues **5** and **6** were also prepared, and their cytotoxicities were compared to those of the aza analogues. Many biologically active natural compounds contain sulfur atoms,^[17] but sulfur has not been reported as a component of natural acetogenin structures. Moreover, divalent sulfur can act as a hydrogen-bond donor comparable with the oxygen of an ether moiety, albeit weaker in strength.^[18] And bearing in mind the importance of hydrogen bonding during binding to enzyme active sites, this could make the thio analogues of acetogenins an interesting subject along with the aza analogues.

Jacobsen's hydrolytic kinetic resolution (HKR)^[19] and Sharpless asymmetric dihydroxylation (AD)^[20] were both used to install the stereochemistry in the synthetic analogues. Jacobsen's kinetic resolution is a well-established method that has also been successfully used on terminal mono-epoxides with different nucleophiles.^[21] Bis-epoxides, on the other hand, are more rarely used as substrates in HKR.^[19a,22] Recently, we reported an efficient and highly stereoselective hydrolytic and aminolytic kinetic resolution of terminal bis-epoxides,^[23] and this method has been used for the synthesis of the aza and thio analogues reported in this paper.

Results and Discussion

We envisioned two variations of the synthetic route, one based on Jacobsen's HKR, and the other on the Sharpless AD method. The retrosynthetic analysis for analogues 1, 2, 5, and 6 is outlined in Figure 4a, and is based on the HKR method. According to this convergent synthetic route, there are two main fragments that must be coupled by an epoxide-opening reaction in the latter stages. These are termed the left-hand fragment, which contains the amine or thiol moieties, and the right-hand fragment 7 or 8, an epoxide containing a terminal γ -lactone or a butenolide unit, respectively. We envisioned that the left-hand fragment could be derived from a chiral epoxide (S)-9, after epoxide opening by an amino or a thiol. The synthesis of (S)-9 could be achieved by subjecting racemic epoxide 9 to HKR conditions. The racemic epoxide can be obtained from commercial sources or by oxidation of alkene 10 using mCPBA (m-chloroperbenzoic acid). The right-hand fragment 7 or 8 could be obtained by alkylation of lactone 12 with iodide 11, which is a functionalized derivative of 13. Epoxy-diol 13 could, in turn, be synthesized by subjecting bis-epoxide 14 to HKR conditions to install two remote stereocentres. The bis-epoxide can be obtained by oxidation of commer-

FULL PAPER

Figure 4. Retrosynthetic analysis of analogues 1-6 using a) Jacobsen's HKR of mono- and bis-epoxides; b) Sharpless AD of olefins.

cially available diene **15** using *m*CPBA. Lactone **12** can be synthesized from (*S*)-propylene oxide and (phenylthio)-acetic acid. Due to the possibility of epimerization of the unsaturated lactone ring under basic conditions,^[24] mild reaction conditions were chosen where possible, and the insertion of the double bond into the lactone ring was planned to be one of the last steps.

For analogues 3 and 4, a synthetic route based on the Sharpless AD method was planned (Figure 4b). This gives diastereomers that are not accessible by the HKR method, as the stereocentres are installed one at a time. The left- and right-hand fragments are to be coupled during the latter steps of the synthesis, similarly to the route in Figure 4a. But here, chiral epoxide (R)-9 was to be derived from chiral diol 17, after asymmetric dihydroxylation of alkene 10. We planned that right-hand fragment 16 would be synthesized by subjecting alkylation product 18 to AD conditions and converting the resulting diol into the epoxide. Iodide 19 is a derivative of diol 20, which we planned to obtain by asymmetric dihydroxylation of diene 15.

For the synthesis of the left-hand fragments, HKR and AD can both be used to give epoxides (S)-9 and (R)-9 (Scheme 1), but HKR gives higher enantioselectivity. When olefin 10 was subjected to osmium-catalysed asym-

Scheme 1. Synthesis of (S)-9 and (R)-9 by HKR and AD.

Eurjoc dogranik Chemist

metric dihydroxylation conditions with chiral ligand $(DHQD)_2PHAL$, diol **17** was formed in excellent yield and with an enantiomeric ratio of 92:8.^[25,26] On the other hand, when racemic epoxide **9** was subjected to HKR conditions, (*S*)-**9** was isolated with an excellent enantiomeric ratio of 99.9:0.1^[27] and in high yield (49% from a theoretical maximum of 50%).

The importance of choosing HKR over AD becomes more relevant in the synthesis of the right-hand fragments, where two stereocentres are set. The two approaches to the right-hand fragments by AD and by HKR are shown in Scheme 2. The asymmetric dihydroxylation of diene 15 was terminated after ca. 50% conversion (monitored by TLC analysis) to give diol 20 with an er of 92:8.^[25] To use HKR, diene 15 was first oxidized by mCPBA into bis-epoxide 14, which consisted of (R,R)-14 (25%), (S,S)-14 (25%), and meso isomer (R,S)-14 (50%). Then under HKR conditions, the meso derivative was converted into 13 in high yield, with an excellent er of 99.3:0.7 and a good dr of 97:3.[28] During the reaction, the aforementioned (R,R)-14 stereoisomer was transformed into a tetrol, and the (S,S)-14 enantiomer remained unaffected in the reaction mixture. Thus, in contrast to the AD approach, both of the olefin moieties in 15 can be functionalized simultaneously when using HKR, and also a higher enantioselectivity can be achieved.

Scheme 2. Synthesis of 20 by AD, and of 13 by HKR.

The primary hydroxy group in epoxy-diol **13** was regioselectively tosylated^[29] using *p*TsCl and Bu₂SnO (cat.) to give **21** (Scheme 3). After protecting the secondary hydroxy group as a silyl ether, tosylate **22** was converted into iodide **11**. Next, alkylation of the lithium enolate derived from lactone **12**^[30] with **16** was investigated. In an attempt to replace HMPA (hexamethylphosphoramide) as an additive, which has previously been used in similar alkylations,^[31] DMPU (N,N'-dimethylpropyleneurea)^[32] and Et₃B-promoted processes^[33] were investigated, but without success. The optimal result was achieved by using LDA (lithium diisopropylamide) and HPMA (10 equiv.), and under these conditions, 7 was formed in 78% yield. Oxidation of the sulfide moiety in 7 followed by elimination gave the butenolide unit in 8. It was noted that the elimination of the phenylsulfenic acid occurred either during the oxidation of the sulfide moiety or during the work-up without subsequent heating of the material.

Scheme 3. Synthesis of right-hand fragments 7 and 8 by HKR.

Diol 20 was converted into compound 18 following a route similar to that used for the conversion of 13 into 7 (Scheme 4). Asymmetric dihydroxylation of 18 gave diol 23, which was converted into epoxide 16.

Initial efforts were directed towards the preparation of aza analogue 1. Epoxide (S)-9 was converted into amino alcohol 24 by treatment with ethylene-1,2-diamine at 50 °C (Scheme 5). When epoxide 8 was treated with amino alcohol 24 under similar conditions, no product was formed, so the second epoxide-opening reaction had to be explored more closely. Since the presence of the butenolide unit in 8 excludes the use of basic conditions and elevated temperatures, the reaction was investigated with some additional Lewis acid catalysts. Several transition metal chlorides and triflates were tested,^[34,35] and it was found that at room temperature they all gave ca. 30% of the coupled product after reaction times of 2-3 d, and the unreacted starting materials were recoverable. When the reaction was heated to 40 °C, the yield doubled, but raising the temperature further resulted in the formation of unidentified byproducts. Finally, epoxide 8 was opened by 24 in the presence of La(OTf)₃ at 40 °C to give the coupled product in 65% yield after 2 d. After removing the silvl ether, analogue 1 was formed.

Scheme 4. Synthesis of right-hand fragment 16 by AD. TBDMS = tert-butyldimethylsilyl.

Scheme 5. Synthesis of aza analogue 1.

The synthesis of analogue 2 is summarized in Scheme 6. Since we have previously shown that N-nosyl protected amino alcohols perform well as nucleophiles in epoxideopening reactions, [26] epoxide (S)-9 was treated with 2nitrobenzenesulfonamide (NH2Ns) at elevated temperatures for 4 d to give amino alcohol 25 in high yield. Somewhat surprisingly, the coupling reaction between this material and epoxide 7 proceeded slowly, and 12 d were required to reach an acceptable conversion to 26. As it is difficult to remove the N-nosyl group in the presence of the butenolide moiety, the protecting group had to be removed before the sulfide was oxidized. Thus, compound 26 was treated with 1-decanethiol and DBU (1.8-diazabicycloundec-7-ene)^[36] to give secondary amine 27. This was followed by quaternary ammonium salt formation with MeSO₃H, oxidation, and subsequent thermal elimination of the sulfoxide moiety to give analogue 2. Gratifyingly, the silvl protecting group was also removed during the salt formation/oxidation/elimination sequence. Analogue 2 was isolated in 63% yield over three steps.

Compounds 3 and 4, the *N*-methylated derivatives of 1 and 2, were prepared by a synthetic route based on the Sharpless AD method (Scheme 7). Treatment of epoxide (*R*)-9 with *N*,*N'*-dimethylethylene-1,2-diamine gave 28, which was then coupled with right-hand fragment 16 to give 29. Treating this material with MeSO₃H, followed by oxidation and elimination, gave the derivative containing the butenolide unit along with some amount of final product 3. After hydrolysis of the silyl ether in the remaining material, analogue 3 was isolated in a combined yield of 87% over two steps. Analogue 4 was prepared following a route identical to that used for compound 3, except that methylamine was used as the nucleophile in the first epoxide-opening reaction.

Thio analogues **5** and **6** were prepared from (*S*)-**9** following a route based on HKR (Scheme 8). Different conditions were investigated for the epoxide-opening reaction with sulfides. The best results were obtained using InCl₃ as a catalyst.^[37] The reaction between (*S*)-**9** and 1,2-ethanedithiol in the presence of InCl₃ in *i*PrOH gave **32** in 61%

Scheme 6. Synthesis of aza analogue 2. TEBA = benzyltriethylammonium chloride.

Scheme 7. Synthesis of aza analogues 3 and 4.

Scheme 8. Synthesis of thio analogues 5 and 6.

yield. Next, sulfide 32 was coupled with epoxide 8 to give 33, which was deprotected to give this analogue 5. The final analogue, compound 6, was prepared following an identical route but using 2,2'-thiodiethanethiol as the nucleophile.

The ¹H and ¹³C NMR spectra of aza analogues 2, 3, and 4 show the presence of some minor contamination, which is believed to be diastereomers resulting from epimerization in the butenolide unit after the elimination of phenylsulfenic acid at elevated temperatures. No such epimerization was observed in aza analogue 1, nor in thio analogues 5 and 6, where the unsaturated lactone ring was formed at room temperature. Despite all of the investigations concerning the lactone ring unit of the acetogenins, there does not seem to be a consensus about the exact structural requirement for biological activity.[38]

Biological Evaluation

The antiproliferative activity of analogues 1-6 against the HeLa cell line are given in Table 1 as the concentration of compound necessary to give one-half the maximum response (ED₅₀). Rotenone, a known complex I inhibitor,^[39] was used as a reference. After 24 h of treatment, all of the aza analogues (i.e., 1–4) showed cytotoxicity $ED_{50} < 10 \mu M$, and performed more effectively than rotenone (ED₅₀ = 77.5 µM). The thio analogues (i.e., 5 and 6) had less effect on cell growth than the aza analogues, and they needed concentrations of around 100 µM or higher to reach the effective dose.

The best result was obtained with N,N'-dimethylated diamine analogue 3, which, at a concentration of $3 \mu M$, had a

Table 1. Antiproliferative activity of compounds $1\!-\!6$ against the HeLa cell line.^[a]

Entry	Compound	ED ₅₀ [µм] ^[b]
1	1	5.7
2	2	8.2
3	3	3.1
4	4	7.7
5	5	91.0
6	6	>100
7	rotenone ^[c]	77.5

[a] HeLa cell line, human epitheloid cervix carcinoma. [b] ED_{50} , effective dose. [c] Rotenone was used as reference as a complex I inhibitor.

cytotoxicity of $34.7 \pm 4.4\%$, and at 5 µM had a cytotoxicity of $91.9 \pm 3.3\%$ (ED₅₀ = 3.1 µM). Based on our findings, the epimerization of the α , β -unsaturated lactone ring in **3** did not seem to have a great effect on its biological activity, as the antiproliferative activity of **3** falls in the same range as its non-methylated counterpart **1** (ED₅₀ = 5.7 µM), for which no epimerization was detected. *N*-Methylated analogue **4** and non-methylated analogue **2** had similar effective doses of 7.7 µM and 8.2 µM, respectively. It seems that aza analogues with diamine moieties, whether methylated or not, are more cytotoxic than monoamine analogues.

Conclusions

Four aza analogues 1–4 and two thio analogues 5 and 6 were synthesized according to a general synthetic scheme that allows facile variability of the central heteroatom-containing portion of the molecule. Hydrolytic kinetic resolution of bis-epoxides was successfully used to establish two remote stereocentres with high enantio- and diastereoselectivity in a single step. All the analogues synthesized underwent preliminary in vitro studies against the HeLa cell line. While the aza analogues showed a 50% cell-viability reduction at concentrations under 10 µM, the thio analogues had less effect, needing concentrations of around 100 µM or above to reach an effective dose. Although we observed epimerization in the α , β -unsaturated lactone ring for aza analogues 2–4, the bioassay studies did not show significant differences in activity between analogues 2-4 and the nonepimerized analogue 1.

Experimental Section

Cell Culture: Human cervical cancer cell line HeLa (American Type Culture Collection via LGC, Sweden) was cultured in Dulbecco's Modified Eagle Medium (DMEM) with high glucose and with L-glutamine. The medium was supplemented with 10% fetal bovine serum (FBS), sodium pyruvate (1 mM), penicillin (100 U/mL), streptomycin (100 μ g/mL) and 1% nonessential amino acids (further denoted as complete medium; PAA Laboratories GmbH, Austria). Cell cultures were cultivated at 37 °C in a humidified 5% CO₂ incubator.

In vitro Proliferation Assay: Long-term toxicity was evaluated using an MTS^[40] proliferation assay (CellTiter 96[®] Aqueous One Solution Cell Proliferation Assay, Promega, Madison, WI, USA). The MTS assay measures the activity of mitochondrial dehydrogenases by measuring their conversion of tetrazolium salts into formazan. Briefly, the cells were seeded in 96-well plates at a density 1×10^4 cells per well in DMEM-high glucose medium (100 µL) 1 d before treatment. The test compounds were diluted with DMSO (0.01 mm-10 mm). The cells were treated with the serial dilutions of the test compounds (not exceeding 1% v/v in final concentration), and the treated cells were incubated for 24 h at 37 °C in a humidified chamber in an atmosphere containing 5% CO₂. Rotenone, a classical complex I inhibitor, was used as a positive control. MTS was added to cells according to the manufacturer's general protocol. The quantity of formazan produced was measured colourimetrically by absorbance at 490 nm on a Tecan Sunrise microplate absorbance reader, and is directly proportional to the number of living cells in culture. All experiments were performed in triplicate, and the relative cell viability (%) was expressed as the percent absorbance of the control (cells treated with 1% DMSO).

General Remarks: ¹H and ¹³C NMR spectra were recorded at 400.1 and 100.6 MHz, respectively. For compound 1, the ¹³C NMR spectrum was recorded at 201.2 MHz. The chemical shifts for the ¹H and ¹³C NMR spectra are given in ppm, and are calibrated using residual solvent signals (for ¹H, CDCl₃: δ = 7.26 ppm, and for ¹³C, $CDCl_3$: $\delta = 77.0$ ppm). The following abbreviations are used for multiplicities: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br. s, broad singlet; vt, virtual triplet. Reactions were monitored by thin-layer chromatography (TLC), and TLC plates were visualized either by UV detection or by staining with KMnO4 or phosphomolybdic acid solution. Purification of reaction products was done by flash chromatography using silica gel 60 (0.040-0.063 mm, 230-400 mesh). In HPLC analysis, signals were detected by a diode-array detector. For HRMS analysis, an LTQ Orbitrap analyser was used. An FTIR spectrophotometer (ATR) was used for IR analysis. All reagents and solvents were obtained from commercial sources and were used without further purification.

1,2-Epoxydodecane (9): A solution of 1-dodecene **10** (1500 mg, 8.91 mmol) in CH₂Cl₂ (10 mL) was cooled to 0 °C, and *m*CPBA (17.82 mmol, 3994 mg, >77% purity) was added. The reaction mixture was stirred for 16 h at room temp., then it was quenched with Na₂S₂O₃ (satd. aq.). The phases were separated, and the aqueous phase was extracted three times with CH₂Cl₂. The combined organic extracts were dried with MgSO₄, filtered, and concentrated to dryness. The residue was redissolved in petroleum ether, and the solution was filtered and then concentrated in vacuo to dryness. The residue was purified by flash chromatography on silica (5% EtOAc in petroleum ether) to give **9** (1626 mg, 99%) as a clear oil. ¹H NMR (400.1 MHz, CDCl₃): $\delta = 2.87$ (m, 1 H), 2.71 (dd, J = 5.0, 4.0 Hz, 1 H), 2.43 (dd, J = 5.0, 2.7 Hz 1 H), 1.54–1.17 (m, 18 H), 0.85 (vt, 3 H). The ¹H NMR spectroscopic data is in agreement with the data for commercially available 1,2-epoxydodecane.

(S)-1,2-Epoxydodecane [(S)-9]: (S,S)-(salen)cobalt(II) (28 mg, 0.047 mmol) was dissolved in toluene (0.5 mL), and AcOH (10 μ L, 0.18 mmol) was added. The solution was stirred at room temp. open to air for 1 h, and then it was concentrated in vacuo to dryness. The residue was dissolved in THF (0.5 mL), and 1,2-epoxydodecane 9 (862 mg, 4.67 mmol) was added. The mixture was cooled to 0 °C and stirred for 5 min. Then H₂O (46 μ L, 2.57 mmol) was added at 0 °C. The reaction mixture was stirred at room temp. for 16 h, then it was concentrated in vacuo to dryness. The residue was purified by column chromatography on silica (10% EtOAc in petroleum ether) to give product (S)-9 (423 mg, 49%) as a beige oil. $[a]_{23}^{23} = -6.6$ (c = 0.3, CH₂Cl₂) {ref.^[41] for (*R*)-1,2-epoxydo-

Eurjoc eropean journal

decane: $[a]_{D}^{23} = +6.0$ (c = 0.3, CH₂Cl₂). ¹H NMR (400.1 MHz, CDCl₃): $\delta = 2.84$ (m, 1 H), 2.67 (dd, J = 5.0, 4.0 Hz, 1 H), 2.39 (dd, J = 5.0, 2.7 Hz, 1 H), 1.51–1.16 (m, 18 H), 0.83 (vt, 3 H) ppm. ¹³C NMR (100.6 MHz, CDCl₃): $\delta = 52.3, 47.0, 32.4, 31.8, 29.56, 29.52$ (two overlapping signals), 29.42, 29.2, 25.9, 22.6, 14.0 ppm. IR: $\tilde{v} = 2924, 2854, 1465, 914, 833, 721$ cm⁻¹. The *er* of 99.9:0.1 was measured from a tosyl derivative of (*S*)-**9** by HPLC analysis [CHIRALPAK IA column, 2% *i*PrOH in hexane, 1.0 mL/min; *R* isomer 38.8 min (minor), *S* isomer 49.1 (major)]. See Supporting Information for further details.

1,2:13,14-Diepoxytetradecane (14): *m*CPBA (3.30 g, 14.74 mmol, >77% purity) was added in one portion to a cooled (0 °C) solution of 1,13-tetradecadiene 15 (1.14 g, 5.89 mmol) in CH₂Cl₂ (20 mL). The mixture was stirred at 0 °C for 30 min, then it was allowed to warm to room temp. and stirred for a further 2 h. After TLC indicated that the starting material had been consumed, Na₂S₂O₃ (20% aq.; 50 mL) was added, and the mixture was stirred for 5 min. Further $Na_2S_2O_3$ (20% aq.; 30 mL) and CH_2Cl_2 (30 mL) were added. The phases were separated, and the aqueous phase was extracted with CH_2Cl_2 (3 × 40 mL). The combined organic extracts were dried with MgSO₄, filtered, and concentrated in vacuo. The residue was dissolved in hexanes, and the solution was filtered. Purification by flash column chromatography on silica (10% EtOAc in hexanes) gave product 14 (1.23 g, 92%) as a beige oil. ¹H NMR (400.1 MHz, CDCl₃): δ = 2.86 (m, 2 H), 2.70 (dd, J = 5.0, 4.0 Hz, 2 H), 2.42 (dd, J = 5.0, 2.7 Hz, 2 H), 1.53–1.17 (m, 20 H) ppm. ¹³C NMR $(100.6 \text{ MHz}, \text{CDCl}_3)$: $\delta = 52.2, 46.9, 32.3, 29.4-29.3, 25.8 \text{ ppm}$. IR: $\tilde{v} = 2933, 2854, 1461, 1407, 1257, 836 \text{ cm}^{-1}$. HRMS: calcd. for $C_{14}H_{26}O_2 [M + H]^+$ 227.2005; found 227.1999.

(2R,13S)-13,14-Epoxytetradecane-1,2-diol (13): (S,S)-(salen)cobalt(II) (14 mg, 22 µmol) was dissolved in CH₂Cl₂ (1 mL), and AcOH (5 µL, 90 µmol) was added. The mixture was stirred at room temp. open to air for 1 h, during which time the colour turned from dark red to brown. Then the solution was concentrated to dryness in vacuo. The residue was redissolved in THF (2 mL), and this solution was added to bis-epoxide 14 (510 mg, 2.25 mmol). The solution was cooled to 0 °C, and H₂O (38 µL, 2.14 mmol) was added. The reaction mixture was stirred at room temp. for 16 h. Then the mixture was concentrated in vacuo, and the residue was purified by column chromatography on silica (2-6% MeOH in CH_2Cl_2) to give 13 (250 mg, 44% from theoretical 50% yield) as a white solid. $R_{\rm f}$ (13) = 0.8 in 50% EtOAc/petroleum ether [$R_{\rm f}$ (14) = 0.3 in 50% EtOAc/petroleum ether; $R_{\rm f}$ (tetrol) = 0.9 in 10% MeOH/ CH₂Cl₂], m.p. 60–61.3 °C. $[a]_D^{20} = -6.0$ (c = 1.15, CHCl₃). ¹H NMR (400.1 MHz, CDCl₃): δ = 3.75–3.62 (m, 2 H), 3.43 (m, 1 H), 2.90 (m, 1 H), 2.74 (dd, J = 5.0, 4.0 Hz, 1 H), 2.46 (dd, J = 5.0, 2.7 Hz, 1 H), 2.05 (br. s, 1 H), 1.93 (br. s, 1 H), 1.56–1.22 (m, 20 H) ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 72.2, 66.6, 52.3, 47.0, 33.0, 32.3, 29.5, 29.4–29.3, 29.2, 25.8, 25.4 ppm. IR: $\tilde{v} = 3475$, 3313, 2916, 2850, 1469, 1072, 848 cm⁻¹. HRMS: calcd. for C₁₄H₂₈O₃ [M + H]⁺ 245.2111; found 245.2106.

The stereomeric ratios for 13 were determined by chiral HPLC analysis after derivatization. The dr of 97:3 was measured after tosylation of 13 to give 21 (Phenomenex LUX Cellulose-1 column, 10% *i*PrOH in hexane, 1.5 mL/min, major isomer 8.83 min, minor isomer 9.94 min). The *er* of 99.3:0.7 was measured after preparation of a thiol derivative (Phenomenex LUX Cellulose-1 column, 20% *i*PrOH in hexane, 1.5 mL/min, minor isomer 14.5 min, major isomer 17.3 min). For further details, see Supporting Information.

(*R*)-2-Hydroxy-12-[(*S*)-oxiran-2-yl]dodecyl-4-methylbenzenesulfonate (21): Epoxy-diol 13 (178 mg, 0.72 mmol) was dissolved in CH_2Cl_2 (5 mL), and Bu_2SnO (3 mg, 14 µmol), Et_3N (101 µL, 0.72 mmol), and pTsCl (145 mg, 0.76 mmol) were added. The reaction mixture was stirred for 17 h at room temp. Then the mixture was diluted with CH₂Cl₂, and NaHCO₃ (satd. aq.) was added. The phases were separated, and the aqueous phase was extracted three times with CH₂Cl₂. The combined organic extracts were dried with MgSO₄, filtered, and concentrated in vacuo. The residue was purified by column chromatography on silica $(1-2\% \text{ MeOH in CH}_2\text{Cl}_2)$ to give product 21 (253 mg, 87%) as a white solid, m.p. 58-60 °C. $[a]_{D}^{20} = -8.2$ (c = 1.15, CHCl₃). ¹H NMR (400.1 MHz, CDCl₃): δ = 7.79-7.75 (m, 2 H), 7.35-7.31 (m, 2 H), 4.00 (dd, J = 9.9, 2.8 Hz)1 H), 3.85 (dd, J = 9.9, 7.0 Hz, 1 H), 3.79 (m, 1 H), 2.88 (m, 1 H),2.72 (m, 1 H), 2.44 (m, 1 H), 2.42 (br. s, 3 H), 2.30 (br. s, 1 H), 1.53–1.17 (m, 20 H) ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 144.9, 132.6, 129.8, 127.8, 73.9, 69.3, 52.3, 47.0, 32.5, 32.3, 29.4, 29.3, 25.8, 25.1, 21.5 ppm. IR: \tilde{v} = 3374, 2923, 2854, 1596, 1357, 1176, 960, 836, 813, 736, 667 cm⁻¹. HRMS: calcd. for C₂₁H₃₄O₅S [M + H]⁺ 399.2199; found 399.2192.

(R)-2-(tert-Butyldimethylsilyloxy)-12-[(S)-oxiran-2-yl]dodecyl-4methylbenzenesulfonate (22): Tosylate 21 (677 mg, 1.70 mmol) was dissolved in dry DMF (10 mL), and imidazole (289 mg, 4.25 mmol) and TBDMSCl (512 mg, 3.40 mmol) were added at 0 °C. The reaction mixture was stirred at room temp. overnight. Then the mixture was diluted with EtOAc, and brine was added. The phases were separated, and the aqueous phase was extracted three times with EtOAc. The combined organic extracts were dried with NaSO₄, filtered, and concentrated in vacuo. The residue was purified by column chromatography on silica (10% EtOAc in hexanes) to give product 22 (643 mg, 73%) as a clear oil. $[a]_{D}^{20} = -0.5$ (c = 1.2, CHCl₃). ¹H NMR (400.1 MHz, CDCl₃): δ = 7.79–7.75 (m, 2 H), 7.34–7.30 (m, 2 H), 3.90–3.76 (m, 3 H), 2.88 (m, 1 H), 2.72 (dd, J = 5.0, 4.0 Hz, 1 H), 2.44 (dd, J = 5.0, 2.7 Hz, 1 H), 2.43 (br. s, 3 H), 1.55–1.12 (m, 20 H), 0.82 (br. s, 9 H), 0.01 (br. s, 3 H), -0.004 (br. s, 3 H) ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 144.6, 132.9, 129.7, 127.8, 73.1, 69.8, 52.2, 46.9, 33.9, 32.3, 29.45, 29.40, 29.37, 29.32, 25.8, 25.6, 24.6, 21.5, 17.9, -4.6, -4.9 ppm. IR: $\tilde{v} = 2927$, 2858, 1365, 1180, 836, 779 cm⁻¹. HRMS: calcd. for C₂₇H₄₈O₅SSi $[M + H]^+$ 513.3064; found 513.3050.

(*R*)-13-*tert*-Butyldimethylsilyloxy-14-iodo-(*S*)-1,2-epoxytetradecane (11): A concentrated reaction mixture of tosylate 22 (570 mg, 1.11 mmol) and NaI (250 mg, 1.66 mmol) in DMF (1 mL) was stirred overnight at 60 °C. Then the mixture was concentrated to dryness on a rotary evaporator, and the residue was purified by column chromatography on silica (5% EtOAc in hexanes) to give product 11 (429 mg, 82%) as a clear oil. ¹H NMR (400.1 MHz, CDCl₃): δ = 3.53 (m, 1 H), 3.19 (m, 2 H), 2.90 (m, 1 H), 2.74 (dd, J = 5.0, 4.0 Hz, 1 H), 2.46 (dd, J = 5.0, 2.7 Hz, 1 H), 1.64–1.21 (m, 20 H), 0.90 (br. s, 9 H), 0.09 (s, 3 H), 0.06 (s, 3 H) ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 71.4, 52.3, 47.1, 36.9, 32.4, 29.5 (overlapping signals), 29.4, 25.9, 25.8, 24.9, 18.0, 14.0, -4.3, -4.5 ppm. IR: \tilde{v} = 2928, 2854, 1465, 1253, 1083, 836, 775 cm⁻¹. HRMS: calcd. for C₂₀H₄₁IO₂Si [M + H]⁺ 469.1993; found 469.1978.

(5*S*)-3-{(*R*)-2-[(*tert*-Butyldimethylsilyl)oxy]-12-[(*S*)-oxiran-2-yl]dodecyl}-5-methyl-3-(phenylthio)dihydrofuran-2(3*H*)-one (7): *n*-Butyllithium (2.5 M; 308 μ L, 0.77 mmol) was added to a cooled solution of *N*,*N*-diisopropylamine (108 μ L, 0.77 mmol) in THF (0.5 mL) under an argon atmosphere, and the mixture was stirred for 30 min at 0 °C. The LDA solution was then transferred to lactone 12 (147 mg, 0.70 mmol) by cannula, and the resulting solution was stirred for a further 30 min at 0 °C. Then iodide 11 (301 mg, 0.64 mmol) was dissolved in HMPA (1.1 mL) and THF (0.5 mL), and this solution was added to the reaction mixture by cannula. The reaction mixture was warmed to room temp. and stirred overnight. Then the solution was diluted with EtOAc, NH₄Cl (satd. aq.) was added, and the phases were separated. The organic phase was extracted three times with EtOAc, washed with brine, dried with MgSO₄ and filtered. After concentration in vacuo, the residue was purified by flash chromatography (6% EtOAc in petroleum ether) to give 7 (261 mg, 78%) as a colourless oil. ¹H NMR (400.1 MHz, CDCl₃): δ = 7.57–7.51 (m, 2 H), 7.40–7.29 (m, 3 H), 4.58 (m, 0.3 H, minor isomer), 4.50 (m, 0.7 H, major isomer), 4.24 (m, 0.7 H, major), 3.84 (m, 0.3 H, minor), 3.03 (dd, J = 14.0, 7.6 Hz, 0.7 H), 2.89 (m, 1 H), 2.72 (m, 1 H), 2.44 (dd, J = 5.0, 2.7 Hz, 1 H), 2.09–1.79 (m, 3 H), 1.55–1.15 (m, 25 H), 0.88 (br. s, 9 H, major), 0.85 (br. s, 3 H, minor), 0.15 (br. s, 3 H), 0.11 (br. s, 3 H), 0.03 (br. s, 1 H, minor), 0.01 (br. s, 1 H, minor) ppm. ¹³C NMR (100.6 MHz, CDCl₃): $\delta = 177.4$ (major), 175.0 (minor), 136.9, 136.6, 130.4 (minor), 129.8 (minor), 129.6 (minor), 129.5 (major), 128.9 (major), 128.8 (major), 73.5 (minor), 73.2 (major), 70.2 (minor), 69.4 (major), 55.4 (major), 55.0 (minor), 52.2, 47.0, 42.0 (minor), 41.6 (minor), 41.2 (major), 39.5 (major), 38.4 (major), 37.9 (minor), 32.4, 29.6 (major), 29.5 (minor), 29.4-29.3 (overlapping signals), 25.9–25.8 (overlapping signals), 24.3; 21.2 (major), 20.3 (minor), 17.9, -3.79 (minor), -3.87 (major), -4.16 (minor) ppm. IR: v = 2927, 2854, 1762, 1253, 1184, 1002, 833, 775, 694 cm⁻¹. HRMS: calcd. for $C_{31}H_{52}O_4SSi [M + H]^+$ 549.3428; found 549.3417.

(S)-3-{(R)-2-[(tert-Butyldimethylsilyl)oxy]-12-[(S)-oxiran-2-yl]dodecyl}-5-methylfuran-2(5H)-one (8): A solution of 7 (91 mg, 0.16 mmol) in CH₂Cl₂ (1 mL) was cooled to -20 °C and mCPBA (41 mg, 0.18 mmol, >77% purity) was added. The reaction mixture was stirred at -20 °C for 1.5 h. Then the reaction was quenched with Na₂S₂O₃ (satd. aq.), and the mixture was allowed to warm to room temp. The phases were separated, and the aqueous phase was extracted three times with CH₂Cl₂. The combined organic extracts were dried over MgSO₄, filtered, and concentrated in vacuo. The residue was purified by flash chromatography (8% EtOAc in petroleum ether) to give 8 (64 mg, 88%) as a clear oil. ¹H NMR $(400.1 \text{ MHz}, \text{CDCl}_3)$: $\delta = 7.11 \text{ (m, 1 H)}, 4.99 \text{ (m, 1 H)}, 3.93 \text{ (m, 1 H)}$ H), 2.89 (m, 1 H), 2.72 (dd, J = 5.0, 4.0 Hz, 1 H), 2.45 (dd, J =5.0, 2.7 Hz, 1 H), 2.41 (m, 2 H), 1.55–1.19 (m, 23 H), 0.86 (br. s, 9 H), 0.04 (br. s, 3 H), 0.01 (br. s, 3 H) ppm. ¹³C NMR (100.6 MHz, $CDCl_3$): $\delta = 173.9, 151.4, 130.8, 77.4, 70.1, 52.3, 47.0, 36.9, 32.7,$ 32.4, 29.6, 29.5, 29.49, 29.48, 29.46, 29.3, 25.9, 25.8, 25.1, 18.9, 18.0, -4.4 ppm. IR: v = 2927, 2854, 1755, 1462, 1319, 1253, 1072, 833, 775 cm⁻¹. HRMS: calcd. for $C_{25}H_{46}O_4Si [M + H]^+$ 439.3238; found 439.3228.

(5*S*)-3-{(*R*)-2-[(*tert*-Butyldimethylsilyl)oxy]tetradec-13-en-1-yl}-5methyl-3-(phenylthio)dihydrofuran-2(3*H*)-one (18):^[42] A mixture of diol **20** (400 mg, 1.75 mmol), Bu₂SnO (17 mg, 0.07 mmol), Et₃N (244 μ L, 1.75 mmol), and *p*TsCl (334 mg, 1.75 mmol) was stirred at room temp. overnight. Then the mixture was diluted with EtOAc and filtered, and brine was added. The phases were separated, and the aqueous phase was extracted three times with EtOAc. Then the combined organic extracts were dried with Na₂SO₄, filtered, and concentrated in vacuo to dryness. The crude tosylate (637 mg, 95%) was used in the next step without further purification.

The tosylate (604 mg, 1.57 mmol) was dissolved in dry DMF (2.5 mL), and imidazole (268 mg, 3.94 mmol) and TBDMSCl (261 mg, 1.73 mmol) were added. The reaction mixture was stirred at room temp. for 5.5 h. Then EtOAc and brine were added, the phases were separated, and the aqueous phase was extracted three times with EtOAc. The combined organic extracts were dried with Na₂SO₄, filtered, and concentrated in vacuo to dryness. The residue

was purified by flash chromatography (5% EtOAc in petroleum ether) to give the silylated product (644 mg, 82%).

The silylated compound (580 mg, 1.16 mmol) and NaI (874 mg, 5.83 mmol) were added to acetone (3 mL), and the mixture was heated at 65 °C overnight. Then the reaction mixture was cooled to room temp., and EtOAc and brine were added. The phases were separated, and the aqueous phase was extracted three times with EtOAc. The combined organic extracts were dried with Na₂SO₄, filtered, and concentrated in vacuo to dryness. The residue was purified by flash chromatography (3% EtOAc in petroleum ether) to give the iodated product (458 mg, 86%).

LDA (1.5 m; 323 µL, 0.58 mmol) was added to a cooled solution of lactone 12 (121 mg, 0.58 mmol) in THF (2 mL) under an argon atmosphere, and the mixture was stirred at 0 °C. Then the iodated compound (240 mg, 0.53 mmol) in HMPA (510 µL) was added to the reaction mixture at 0 °C. The reaction mixture was stirred overnight at room temp. Then EtOAc and NH₄Cl (satd. aq.) were added. The phases were separated, and the aqueous phase was extracted three times with EtOAc. The combined organic extracts were dried with Na₂SO₄, filtered, and concentrated in vacuo to dryness. The residue was purified by flash chromatography on silica (3% EtOAc in petroleum ether) to give alkylated product 18 (210 mg, 74%) as an inseparable mixture of diastereomers. ¹H NMR (400.1 MHz, CDCl₃): δ = 7.58–7.52 (m, 2 H), 7.40–7.30 (m, 3 H), 5.81 (m, 1 H), 4.96 (m, 2 H), 4.60 (m, 0.3 H), 4.51 (m, 0.7 H), 4.25 (m, 0.7 H), 3.85 (m, 0.7 H), 3.04 (dd, J = 14.0, 7.6 Hz, 0.7 H), 2.08–1.80 (m, 5 H), 1.49–1.18 (m, 21 H), 0.90 (br. s, 5 H), 0.87 (br. s, 4 H), 0.15 (br. s, 2 H), 0.12 (br. s, 2 H), 0.03 (br. s, 1 H), 0.01 (br. s, 1 H) ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 177.5, 175.0, 139.1, 137.0, 136.6, 129.5, 128.9, 128.8, 114.0, 73.6, 73.2, 70.2, 69.4, 55.4, 42.0, 41.1, 39.4, 38.5, 33.7, 29.7, 29.5–29.4, 29.1, 28.8, 25.9, 25.9, 24.4, 21.3, 17.9, -3.8, -3.9 ppm. IR: $\tilde{v} = 2927$, 2854, 1762, 1462, 1438, 1253, 1180, 837, 775, 748, 690 cm⁻¹. The analytical data is in agreement with that reported in the literature.^[42]

(5S)-3-{(2R)-2-[(tert-Butyldimethylsilyl)oxy]-13,14-dihydroxytetradecyl}-5-methyl-3-(phenylthio)dihydrofuran-2(3H)-one (23): Compound 18 (531 mg, 0.99 mmol) was added to a cooled (0 °C) mixture of K₂OsO₂(OH)₄ (1.5 mg, 0.004 mmol), (DHQD)₂PHAL (15 mg, 0.02 mmol), K₃[Fe(CN)₆] (984 mg, 2.99 mmol), and K₂CO₃ (441 mg, 3.19 mmol) in tBuOH/H₂O (1:1, 20 mL). The reaction mixture was stirred at 4 °C overnight. Solid Na2S2O3·5H2O was added, and then the mixture was stirred for a further 1 h. Then the phases were separated, and the aqueous phase was extracted with EtOAc. The combined organic extracts were washed with brine, dried with Na₂SO₄, filtered, and concentrated in vacuo to dryness. Diol 23 (560 mg, 99% crude yield) was used in the next step without further purification. Compound 23 is a 1:3 mixture of diastereomers, the signals of the major diastereomer are given: ¹H NMR (400.1 MHz, CDCl₃): δ = 7.46–7.40 (m, 2 H), 7.25–9.19 (m, 3 H), 4.41 (m, 1 H), 4.14 (m, 1 H), 3.59–3.50 (m, 2 H), 3.48 (dd, J = 11.2, 2.6 Hz, 1 H), 3.27 (dd, J = 11.2, 7.7 Hz, 1 H), 2.93 (dd, J = 14.0, 7.7 Hz, 1 H), 1.98–1.68 (m, 3 H), 1.39–1.05 (m, 23 H), 0.79 (br. s, 6 H), 0.75 (br. s, 3 H), 0.04 (br. s, 3 H), 0.01 (br. s, 3 H) ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 177.5, 136.4, 130.1, 129.4, 128.8, 73.2, 72.0, 69.2, 66.5, 55.2, 41.0, 39.2, 38.3, 32.9, 30.9, 29.5-29.2, 25.8–25.7, 25.4, 24.2, 21.1, 17.8, –3.9 ppm. IR: \tilde{v} = 3367, 2924, 2854, 1766, 1462, 1253, 1184, 1064, 1006, 833, 775, 748, 690 cm⁻¹. HRMS: calcd. for $C_{31}H_{54}O_5SSi [M + H]^+$ 567.3534; found 567.3536.

(5*S*)-3-{(*R*)-2-[(*tert*-Butyldimethylsilyl)oxy]-12-[(*R*)-oxiran-2-yl]-dodecyl}-5-methyl-3-(phenylthio)dihydrofuran-2(3*H*)-one (16):

Eurjoc organic Chemist

Bu₂SnO (10 mg, 0.04 mmol), Et₃N (146 μ L, 1.05 mmol), and *p*TsCl (200 mg, 1.05 mmol) were added to a solution of **23** (560 mg, 0.99 mmol) in CH₂Cl₂ (9 mL), and the mixture was stirred overnight at room temp. Then the mixture was filtered, and CH₂Cl₂ and brine were added. The phases were separated and the aqueous phase was extracted three times with CH₂Cl₂. The combined organic extracts were dried with MgSO₄, filtered, and concentrated in vacuo to dryness. The residue was purified by flash chromatography (10–15% EtOAc in petroleum ether) to give the tosylated product (681 mg, 94%) as a beige oil.

 K_2CO_3 (275 mg, 1.99 mmol) was added to a cooled (0 °C) solution of the tosylated compound (681 mg, 0.94 mmol) in MeOH (15 mL). The reaction mixture was stirred for 10 h, and HCl (1 M) was then added until neutral pH was reached. The mixture was diluted with EtOAc, and NaHCO₃ (satd. aq.) was added. The phases were separated, and the aqueous phase was extracted three times with EtOAc. The combined organic extracts were dried with MgSO₄, filtered, and concentrated in vacuo to dryness. The residue was purified by flash chromatography (5% EtOAc in petroleum ether) to give product **16** (403 mg, 73% over three steps from **23**) as a beige oil.

(*S*)-1-[(2-Aminoethyl)amino]dodecan-2-ol (24):^[26] A solution of epoxide (*S*)-9 (105 mg, 0.57 mmol) and ethylene-1,2-diamine (196 mg, 3.25 mmol) in EtOH (10 mL) was stirred at 50 °C for 4 h. Then the reaction mixture was diluted with CH₂Cl₂, and brine was added. The phases were separated, and the aqueous phase was extracted with CH₂Cl₂. The combined organic extracts were dried with MgSO₄, filtered, and concentrated in vacuo to dryness. The residue was purified by flash chromatography on silica (10:2:0.5 of CHCl₃/ MeOH/NH₄OH) to give **24** (137 mg, 99%). ¹H NMR (400.1 MHz, CDCl₃, CD₃OD): δ = 3.39 (m, 1 H), 2.56–2.33 (m, 7 H), 2.23 (dd, *J* = 12.0, 9.2 Hz, 1 H), 1.23–0.93 (m, 18 H), 0.61 (vt, 3 H) ppm. ¹³C NMR (100.6 MHz, CDCl₃, CD₃OD): δ = 70.2, 55.6, 51.7, 41.1, 35.8, 32.3, 30.1, 30.0 (overlapping signals), 29.7, 26.0, 23.0, 14.2 ppm. IR: \tilde{v} = 3113, 2916, 2846, 1465, 1114, 925, 837 cm⁻¹. HRMS: calcd. for C₁₄H₃₂N₂O [M + H]⁺ 245.2587; found 245.2581.

(*S*)-3-{(2*R*,13*S*)-2,13-Dihydroxy-14-[(2-{[(*S*)-2-hydroxydodecy]]amino}ethyl)amino]tetradecyl}-5-methylfuran-2(5*H*)-one (1): A mixture of epoxide **8** (36 mg, 82 µmol), amine 24 (40 mg, 164 µmol), and La(OTf)₃ hydrate (5 mg, 8.5 µmol) in *i*PrOH (0.7 mL) was stirred at 40 °C for 2 d, and the reaction was monitored by TLC analysis. Then the mixture was concentrated to dryness in vacuo, and the residue was purified by flash chromatography (5–10% MeOH in CH₂Cl₂) to give the coupled product as a clear oil (37 mg, 65%).

The product (20 mg, 30 µmol) was then dissolved in MeOH (1 mL), and AcCl (22 µL, 300 µmol) was added. The reaction mixture was stirred overnight, and then excess NaHCO₃ was added. The mixture was filtered through a Celite plug, and the filtrate was concentrated to dryness in vacuo. The residue was purified by flash chromatography on silica (10–30% MeOH in CH₂Cl₂) to give **1** (12 mg, 73%) as a beige waxy solid. ¹H NMR (400.1 MHz, CDCl₃, CD₃OD): $\delta = 6.96$ (m, 1 H), 4.74 (m, 1 H), 3.52–3.40 (m, 2 H), 3.33 (m, 1 H), 2.90–2.49 (m, 6 H), 2.15–1.95 (m, 2 H), 1.17–0.86 (m, 41 H), 0.53 (vt, 3 H) ppm. ¹³C NMR (201.2 MHz, CDCl₃): $\delta = 174.9$, 152.0, 130.9, 78.2, 70.5, 69.9, 69.9, 51.4, 44.9, 37.3, 34.8, 33.3, 31.9, 29.6–29.3, 25.6, 25.4, 22.6, 19.0, 14.1 ppm. IR: $\tilde{v} = 3329$, 2920, 2850, 1747, 1458, 1080, 1026 cm⁻¹. HRMS: calcd. for C₃₃H₆₄N₂O₅ [M + H]⁺ 569.4888; found 569.4875.

(S)-N-(2-Hydroxydodecyl)-2-nitrobenzenesulfonamide (25): A solution of epoxide (S)-9 (369 mg, 2.0 mmol), 2-nitrobenzenesulfonamide (809 mg, 4.0 mmol), TEBA (46 mg, 0.2 mmol), and K_2CO_3

(28 mg, 0.2 mmol) in 1,4-dioxane (1.0 mL) was heated at 90 °C for 20 h. The mixture was then cooled to room temperature, diluted with CH₂Cl₂, and washed with brine. The organic phase was dried with Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by flash chromatography on silica (2% MeOH in CH₂Cl₂) to give **25** (724 mg, 94%) as a yellow waxy solid, m.p. 56.5–57.9 °C. ¹H NMR (400.1 MHz, CDCl₃): $\delta = 8.13$ (m, 1 H), 7.87 (m, 1 H), 7.75–7.68 (m, 2 H), 5.74 (dd, J = 7.1, 5.0 Hz, 1 H), 3.74 (m, 1 H), 3.24 (ddd, J = 12.9, 7.1, 3.2 Hz, 1 H), 2.94 (ddd, J = 12.9, 8.0, 5.0 Hz, 1 H), 1.88 (br. s, 1 H), 1.46–1.20 (m, 18 H), 0.88 (vt, 3 H) ppm. ¹³C NMR (100.6 MHz, CDCl₃): $\delta = 148.1, 133.60, 133.59, 132.7, 131.1, 125.4, 70.4, 49.2, 34.7, 31.9, 29.56, 29.53, 29.46, 29.44, 29.3, 25.3, 22.7, 14.1 ppm. IR: <math>\tilde{v} = 3540, 3350, 2930, 2857, 1545, 1367, 1168$ cm⁻¹. HRMS: calcd. for C₁₈H₃₀N₂O₅S [M + Na]⁺ 409.1768; found 409.1762.

N-{(2S,13R)-13-[(tert-Butyldimethylsilyl)oxy]-2-hydroxy-14-[(5S)-5methyl-2-oxo-3-(phenylthio)tetrahydrofuran-3-yl[tetradecyl]-N-[(S)-2-hydroxydodecyl]-2-nitrobenzenesulfonamide (26): K₂CO₃ (23 mg, 166 µmol) was added to a solution of nosylamide 25 (51 mg, 133 µmol) and epoxide 7 (36 mg, 66 µmol) in 1,4-dioxane (0.4 mL), and the reaction mixture was stirred at 90 °C for 12 d. Then the mixture was concentrated to dryness in vacuo. The residue was purified by flash chromatography on silica (50% EtOAc in petroleum ether) to give product 26 (28 mg, 45%) as a beige oil. ¹H NMR (400.1 MHz, CDCl₃): δ = 7.97 (m, 1 H), 7.76–7.66 (m, 2 H), 7.62 (m, 1 H), 7.59–7.50 (m, 2 H), 7.41–7.29 (m, 3 H), 4.60 (m, 0.2 H, minor isomer), 4.51 (m, 0.8 H, major isomer), 4.24 (m, 0.8 H), 4.03–3.92 (m, 2 H), 3.65–3.55 (m, 2 H), 3.09–2.97 (m, 3 H), 2.11-1.79 (m, 3 H), 1.49-1.16 (m, 41 H), 0.89 (br. s, 7 H), 0.86 (m, 5 H), 0.15 (br. s, 2 H), 0.11 (br. s, 2 H), -0.03 (br. s, 1 H), -0.02 (br. s, 1 H) ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 177.6, 175.1 (minor), 148.4, 137.0, 136.6, 133.7, 132.1, 131.6, 130.7, 130.4, 129.9, 129.6 (minor), 129.5, 128.96, 128.91, 124.2, 73.6 (minor), 73.3, 71.64, 71.63, 70.3 (minor), 70.2, 69.5, 57.4, 55.4, 55.0 (minor), 42.4 (minor), 41.7 (minor), 41.2, 39.5, 38.5, 37.9 (minor), 34.7, 34.6 (minor), 31.8, 29.7, 29.6, 29.5–29.4 (overlapping signals), 29.2, 25.99, 25.97, 25.3, 25.2, 24.4, 22.6, 21.3, 20.3 (minor), 18.0, 14.0, -3.7 (minor), -3.8, -4.1 (minor) ppm. IR: $\tilde{v} = 3344$, 2924, 2854, 1762, 1543, 1350, 1165, 1002, 833 cm⁻¹. HRMS: calcd. for $C_{49}H_{82}N_2O_9S_2Si [M + H]^+ 935.5303$; found 935.5302.

(5S)-3-((2R,13S)-2-[(tert-Butyldimethylsilyl)oxy]-13-hydroxy-14-{[(S)-2-hydroxydodecyl]amino}tetradecyl)-5-methyl-3-(phenylthio)dihydrofuran-2(3H)-one (27): 1-Decanethiol (32 µL, 149 µmol) and DBU (23 µL, 149 µmol) were added to a solution of 26 (27 mg, 29 µmol) in DMF (0.4 mL). The reaction mixture was stirred overnight, then it was diluted with EtOAc, and brine was added. The phases were separated, and the aqueous phase was extracted three times with EtOAc. The combined organic extracts were dried with MgSO₄, filtered, and concentrated to dryness in vacuo. The residue was purified by flash chromatoghraphy on silica (3% MeOH in CH_2Cl_2) to give 27 (21 mg, 95%) as a yellow oil. ¹H NMR $(400.1 \text{ MHz}, \text{CDCl}_3)$: $\delta = 7.58-7.52 \text{ (m, 2 H)}, 7.39-7.30 \text{ (m, 3 H)},$ 5.24 (br. s, 3 H), 4.60 (m, 0.2 H), 4.51 (m, 0.8 H), 4.25 (m, 0.8 H), 4.04–3.88 (m, 2 H), 3.04 (dd, J = 14.2, 7.7 Hz, 1 H), 3.00–2.71 (m, 4 H), 2.14-1.78 (m, 3 H), 1.56-1.14 (m, 41 H), 0.89 (br. s, 7 H), 0.86 (vt, 5 H), 0.15 (br. s, 2 H), 0.11 (br. s, 2 H), 0.03 (br. s, 1 H), 0.02 (br. s, 1 H) ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 177.6, 175.1 (minor), 137.0, 136.6, 130.4, 129.6, 128.9, 73.6 (minor), 73.3, 70.2 (minor), 69.5, 67.8, 55.5, 54.5, 54.4, 41.1, 39.4, 38.5, 35.0, 31.9, 29.8-29.5, 29.3, 25.9, 25.4, 24.4, 22.7, 21.3, 18.0, 14.1, -3.8 ppm. IR: v = 3357, 2911, 2849, 1762, 1462, 1439, 1379, 1341, 1253, 1182, 1020, 845, 760, 752 cm⁻¹. HRMS: calcd. for $C_{43}H_{79}NO_5SSi$ [M + H]⁺ 750.5521; found 750.5517.

FULL PAPER

 $(S)-3-((2R,13S)-2,13-Dihydroxy-14-{[(S)-2-hydroxydodecyl]$ amino}tetradecyl)-5-methylfuran-2(5H)-one (2): Compound 27 (29 mg, 39 µmol) was dissolved in CH₂Cl₂ (2.5 mL), and MeSO₃H (5 µL, 77 µmol) was added. The mixture was stirred for 20 min, and then it was concentrated to dryness in vacuo. The residue was redissolved in CH₂Cl₂ (2 mL), the solution was cooled to -20 °C, and a solution of mCPBA (11 mg, 47 µmol, >77% purity) in CH₂Cl₂ (0.5 mL) was added. The reaction mixture was stirred for 1.5 h at -20 °C, then it was quenched with Na₂S₂O₃ (20% aq.; 5 mL). The mixture was brought to room temp. and stirred for a further 15 min. The phases were separated, and the aqueous phase was extracted three times with CH₂Cl₂. The combined organic extracts were dried with MgSO₄, filtered, and concentrated in vacuo. The residue was then redissolved in toluene (2 mL) and heated at reflux for 3.5 h. Then the reaction mixture was brought to room temperature and concentrated to dryness. The residue was purified by flash chromatography (3-10% MeOH in CH₂Cl₂) to give the unsaturated product (12 mg) as a beige oil, and final product 2 (13 mg, 63%). Data for 2: ¹H NMR (400.1 MHz, CDCl₃): δ = 7.19 (m, 1 H), 5.06 (m, 0.3 H), 4.95 (m, 0.7 H), 4.13–3.96 (m, 2 H), 3.84 (m, 0.7 H), 3.16–2.87 (m, 4 H), 2.56–2.37 (m, 2 H), 1.53–1.11 (m, 38 H), 0.87 (vt, 3 H) ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 174.7, 151.9, 151.0, 131.2, 128.2, 81.8, 78.0, 70.5, 69.9, 68.5, 67.0, 54.7, 37.4, 34.9, 33.3, 31.9, 29.6–29.3, 25.4, 25.3, 24.9, 23.3, 22.6, 19.0, 14.1 ppm. IR: v = 3352, 2909, 2847, 1742, 1462, 1211, 1041, 753 cm⁻¹. HRMS: calcd. for $C_{31}H_{59}NO_5 [M + H]^+$ 526.4466; found 526.4467.

(*R*)-1-{Methyl[2-(methylamino)ethyl]amino}dodecan-2-ol (28): Epoxide (*R*)-9 (306 mg, 1.66 mmol) was dissolved in *i*PrOH (0.5 mL), and *N*,*N'*-dimethylethylene-1,2-diamine (900 µL, 8.30 mmol) was added. The reaction mixture was warmed to 40 °C, and stirred for 18 h. The mixture was concentrated in vacuo, and the residue was purified by flash chromatography (2% MeOH in CH₂Cl₂) to give product **28** (295 mg, 65%) as a colourless waxy substance. ¹H NMR (400.1 MHz, CDCl₃): δ = 3.61 (m, 1 H), 2.83 (br. s, 2 H), 2.72–2.58 (m, 3 H), 2.46 (m, 1 H), 2.42 (br. s, 3 H), 2.28 (m, 1 H), 2.26 (br. s, 3 H), 1.50–1.16 (m, 18 H), 0.85 (vt, 3 H) ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 67.5, 63.8, 56.9, 49.3, 42.8, 36.1, 34.8, 31.8, 29.7, 29.5, 29.2, 25.6, 22.6, 14.0 ppm. IR: \tilde{v} = 3410, 2920, 2850, 2796, 1462, 1361, 1303, 1064, 1045, 1022, 960, 867, 779 cm⁻¹. HRMS: calcd. for C₁₆H₃₆N₂O [M + H]⁺ 273.2900; found 273.2900.

(5S)-3-{(2R,13R)-2-[(tert-Butyldimethylsilyl)oxy]-13-hydroxy-14-[(2-{[(R)-2-hydroxydodecyl](methyl)amino}ethyl)(methyl)amino]tetradecyl}-5-methyl-3-(phenylthio)dihydrofuran-2(3H)-one (29): Epoxide 16 (74 mg, 136 µmol) and amine 28 (44 mg, 163 µmol) were dissolved in iPrOH (0.3 mL), and the mixture was heated at 50 °C for 4 d. The mixture was concentrated in vacuo, and the residue was purified by flash chromatography (2% MeOH in CH₂Cl₂) to give product 29 (73 mg, 65%) as a beige oil. ¹H NMR (400.1 MHz, CDCl₃): δ = 7.59–7.51 (m, 2 H), 7.40–7.29 (m, 3 H), 4.59 (m, 0.3 H), 4.51 (m, 1 H), 4.24 (m, 1 H), 3.72-3.60 (m, 2 H), 3.03 (dd, J = 13.9, 7.6 Hz,1 H), 2.75–2.64 (m, 2 H), 2.42–2.24 (m, 10 H), 2.09– 1.78 (m, 3 H), 1.51-1.06 (m, 41 H), 0.89 (br. s, 7 H), 0.87-0.83 (m, 5 H), 0.14 (br. s, 2 H), 0.10 (br. s, 2 H), 0.02 (m, 1 H), 0.01 (m, 1 H) ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 177.5, 175.0 (minor isomer), 136.9, 136.6, 129.5, 128.9, 128.8, 73.6 (minor), 73.2, 70.2 (minor), 69.4, 68.0 (minor), 67.8, 63.3, 55.3, 54.5, 43.6, 42.8, 42.4, 41.1, 39.4, 38.5, 34.7, 31.8, 29.7-29.4, 29.2, 25.9-25.9, 25.6, 24.4, 22.6, 21.2, 17.9, 14.0, -3.8 ppm. IR: v = 3402, 2922, 2851, 1764, 1462, 1250, 1180, 1061, 833, 773 cm⁻¹. HRMS: calcd. for $C_{47}H_{88}N_2O_5SSi [M + H]^+ 822.6289$; found 822.6272.

 $(S)-3-{(2R,13R)-2,13-Dihydroxy-14-[(2-{[(R)-2-hydroxydodecyl]-$ (methyl)amino}ethyl)(methyl)amino|tetradecyl}-5-methylfuran-2(5H)-one (3): MeSO₃H (10 µL, 154 µmol) was added to a solution of 29 (43 mg, 52 μ mol) in CH₂Cl₂ (1.0 mL). The mixture was stirred for 15 min, then it was concentrated to dryness in vacuo. The residue was redissolved in CH₂Cl₂ (1.5 mL), the solution was cooled to -20 °C, and a solution of mCPBA (14 mg, 63 µmol, >77 purity) in CH₂Cl₂ (0.5 mL) was added. The reaction mixture was stirred for 2 h at -20 °C, then it was quenched with Na₂S₂O₃ (20%) aq.). The mixture was brought to room temp. and stirred for a further 15 min. The phases were separated, and the aqueous phase was extracted three times with CH₂Cl₂. The combined organic extracts were dried with MgSO₄, filtered, and concentrated in vacuo. The residue was then redissolved in toluene (1.5 mL) and heated at reflux for 4 h. Then the reaction mixture was brought to room temp. and concentrated to dryness. The residue was purified by flash chromatography (5-10% MeOH in CH₂Cl₂) to give the product with an α,β -unsaturated lactone ring and an intact silvl group (26 mg), and also final product 3 (6 mg). The silvl-ether-bearing compound (26 mg, 37 µmol) was dissolved in MeOH (1.5 mL), and AcCl (20 µL, 281 µmol) in MeOH (1.0 mL) was added. The mixture was stirred for 16 h under argon. The reaction was quenched by the addition of solid NaHCO₃, then the mixture was filtered, and the filtrate was concentrated to dryness in vacuo. The residue was purified by flash chromatography (2-10% MeOH in CH₂Cl₂) to give 3 (combined yield: 27 mg, 87%) as a beige oil. ¹H NMR $(400.1 \text{ MHz}, \text{CDCl}_3)$: $\delta = 7.16 \text{ (m, 1 H)}, 4.98 \text{ (m, 0.4 H)}, 4.88 \text{ (m,)}$ 0.6 H), 3.93 (m, 0.7 H), 3.81-3.72 (m, 2 H), 3.11-2.84 (m, 4 H), 2.76-2.63 (m, 4 H), 2.60 (br. s, 6 H), 2.35 (m, 1 H), 1.44-1.06 (m, 43 H), 0.78 (vt, 3 H) ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 175.0, 152.2, 151.2, 130.7, 81.9, 78.1, 69.3, 66.6, 65.5, 62.2, 61.9, 52.8, 42.1, 41.7, 37.0, 34.4, 33.1, 32.7, 31.7, 29.4–29.0, 25.3, 25.2, 25.1, 24.7, 22.7, 22.4, 18.6, 13.8 ppm. IR: $\tilde{v} = 3387$, 2924, 2854, 1747, 1458, 1199, 1072 cm⁻¹. HRMS: calcd. for C₃₅H₆₈N₂O₅ [M + H]⁺ 597.5201; found 597.5195.

(*R*)-1-(Methylamino)dodecan-2-ol (30): A solution of epoxide (*R*)-9 (273 mg, 1.48 mmol) and methylamine (8 m in EtOH; 930 μ L, 7.44 mmol) was heated at 50 °C for 9 h. Then the mixture was concentated in vacuo, and the residue was purified by flash chromatography (10% MeOH in CH₂Cl₂) to give product 30 (209 mg, 65%) as a white solid. ¹H NMR (400.1 MHz, CDCl₃): δ = 3.63–3.50 (m, 3 H), 2.53 (d, *J* = 11.9, 3.2 Hz, 1 H), 2.41 (d, *J* = 11.9, 9.2 Hz, 1 H), 2.35 (br. s, 3 H), 1.43–1.10 (m, 18 H), 0.79 (vt, 3 H) ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 68.9, 68.8, 57.4, 35.8, 35.2, 31.7, 29.6, 29.4, 29.1, 25.6, 22.5, 13.9 ppm. IR: \tilde{v} = 3417, 3286, 2916, 2846, 1469, 910, 891, 864, 717 cm⁻¹. HRMS: calcd. for C₁₃H₂₉NO [M + H]⁺ 216.2321; found 216.2320.

(5S)-3-((2R,13R)-2-[(tert-Butyldimethylsilyl)oxy]-13-hydroxy-14-{[(R)-2-hydroxydodecyl](methyl)amino}tetradecyl)-5-methyl-3-(phenylthio)dihydrofuran-2(3H)-one (31): A solution of epoxide 16 (100 mg, 182 µmol) and amine 30 (109 mg, 506 µmol) in iPrOH (2 mL) was heated at 50 °C for 19 h. Then the reaction mixture was concentrated in vacuo, and the residue was purified by flash chromatography (2% MeOH in petroleum ether) to give product 31 (128 mg, 92%) as a beige oil. ¹H NMR (400.1 MHz, CDCl₃): δ = 7.57-7.51 (m, 2 H), 7.42-7.29 (m, 3 H), 4.60 (m, 0.2 H), 4.51 (m, 0.8 H), 4.25 (m, 0.8 H), 3.73-3.62 (m, 2 H), 3.04 (dd, J = 14.1, 7.6 Hz, 0.8 H), 2.84 (br. s, 2 H), 2.48-2.25 (m, 8 H), 2.09-1.78 (m, 3 H), 1.50-1.17 (m, 41 H), 0.89 (br. s, 7 H), 0.87-0.84 (m, 5 H, overlap), 0.14 (br. s, 2 H), 0.11 (br. s, 2 H), 0.04-0.01 (m, 2 H) ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 177.5, 175.1 (minor isomer), 137.0, 136.6, 130.3, 129.5, 128.9, 128.8, 73.6, 73.3, 70.2, 69.4, 68.0, 67.5, 65.4, 63.8, 55.4, 55.0, 43.6, 42.3, 41.8, 41.6, 41.1, 39.4,

38.5, 37.9, 34.9, 34.9, 31.8, 29.7, 29.5–29.4, 29.3, 25.9, 25.6, 25.5, 24.4, 22.6, 21.3, 17.9, 14.0, –3.8 ppm. IR: \tilde{v} = 3410, 2924, 2854, 1766, 1462, 1253, 1184, 1053, 1006, 833, 775 cm⁻¹. HRMS: calcd. for C₄₄H₈₁NO₅SSi [M + H]⁺ 764.5677; found 764.5672.

(S)-3-((2R,13R)-2,13-Dihydroxy-14-{[(R)-2-hydroxydodecyl]-(methyl)amino}tetradecyl)-5-methylfuran-2(5H)-one (4): MeSO₃H (8 µL, 120 µmol) was added to a solution of amine 31 (51 mg, 67 µmol) in CH₂Cl₂ (1.0 mL). The mixture was stirred for 15 min, and then it was concentrated to dryness in vacuo. Then the solid was redissolved in CH₂Cl₂ (2.0 mL), the solution was cooled to -20 °C, and a solution of *m*CPBA (18 mg, 81 µmol, >77% purity) in CH₂Cl₂ (1.0 mL) was added. The reaction mixture was stirred 30 min at -20 °C, and then it was quenched with Na₂S₂O₃ (20%) aq.). The mixture was brought to room temp. and stirred for a further 15 min. The phases were separated, and the aqueous phase was extracted three times with CH2Cl2. The combined organic extracts were dried with MgSO₄, filtered, and concentrated in vacuo. The residue was then redissolved in toluene (4.0 mL) and heated at reflux for 2 h. Then the reaction mixture was brought to room temp. and concentrated to dryness. The residue was purified by flash chromatography (2% MeOH in CH_2Cl_2) to give the unsaturated product still containing a silvl ether (20 mg), and also final product 4 (9 mg). The silvl-ether-bearing compound (20 mg, 31 μ mol) was dissolved in MeOH (1 mL), and AcCl (11 μ L, 155 µmol) was added. The mixture was stirred for 12 h under argon. The reaction was quenched by the addition of solid NaHCO₃, then the mixture was filtered, and the filtrate was concentrated to dryness in vacuo. The residue was purified by flash chromatography (10% MeOH in CH₂Cl₂) to give 4 (13 mg; combined yield: 22 mg, 60%) as a beige oil. ¹H NMR (400.1 MHz, CDCl₃): $\delta =$ 7.18 (m, 1 H), 5.05 (m, 0.3 H), 4.95 (m, 0.7 H), 4.06 (m, 1 H), 3.92-3.79 (m, 2 H), 2.85-2.35 (m, 7 H), 1.53-1.17 (m, 41 H), 0.87 (vt, 3 H) ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 174.6, 174.6, 151.8, 150.9, 131.2, 131.1, 81.8, 77.9, 69.9, 67.0, 66.7, 66.1, 65.3, 64.1, 43.5, 37.3, 35.0–34.8, 33.3, 33.3, 31.8, 30.9, 29.6–29.1, 25.5– 25.4, 24.8, 23.3, 22.6, 19.0, 14.0 ppm. IR: v = 3363, 2924, 2854, 1751, 1458, 1373, 1056, 732 cm⁻¹. HRMS: calcd. for C₃₂H₆₁NO₅ $[M + H]^+$ 540.4622; found 540.4605.

(*S*)-1-[(2-Mercaptoethyl)thio]dodecan-2-ol (32): InCl₃ (43 mg, 0.19 mmol) and 1,2-ethanedithiol (822 μ L, 9.77 mmol) were added to a solution of epoxide (*S*)-9 (360 mg, 1.95 mmol) in *i*PrOH (1.5 mL). The reaction mixture was stirred for 1 h, then after TLC indicated that the epoxide had been consumed the mixture was concentrated to dryness in vacuo. The residue was purified by flash chromatography (2% EtOAc in petroleum ether) to give **32** (334 mg, 61%) as a white solid. ¹H NMR (400.1 MHz, CDCl₃): δ = 3.62 (m, 1 H), 2.79–2.66 (m, 5 H), 2.54 (br. s, 1 H), 2.41 (dd, *J* = 13.6, 8.7 Hz, 1 H), 1.52–1.17 (m, 18 H), 0.85 (vt, 3 H) ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 69.6, 40.0, 36.2, 36.1, 31.8, 29.5, 29.5–29.4, 29.2, 28.6 25.6, 24.7, 22.5, 14.0 ppm. IR: \tilde{v} = 3360, 2916, 2850, 1465, 1087, 1049, 721 cm⁻¹. HRMS: calcd. C₁₄H₃₀OS₂ [M + Na]⁺ 301.1630; found 301.1626 ppm.

(*S*)-3-{(*2R*,13*S*)-2-[(*tert*-Butyldimethylsilyl)oxy]-13-hydroxy-14-[(2-{[(*S*)-2-hydroxydodecyl]thio}ethyl)thio]tetradecyl}-5-methylfuran-2(*5H*)-one (33): A mixture of epoxide 8 (41 mg, 94 µmol), sulfide 32 (52 mg, 189 µmol), and InCl₃ (2 mg, 9.4 µmol) in *i*PrOH (0.5 mL) was stirred at room temp. for 21 h, and then the mixture was concentrated in vacuo. The residue was purified by flash chromatography (20% EtOAc in petroleum ether) to give product 33 (39 mg, 58%) as a clear oil. ¹H NMR (400.1 MHz, CDCl₃): δ = 7.11 (m, 1 H), 4.99 (m, 1 H), 3.94 (m, 1 H), 3.70–3.61 (m, 2 H), 2.79–2.72 (dd, *J* = 13.7, 3.4 Hz, 2 H), 2.76 (br. s, 4 H), 2.48 (dd, *J* = 13.7, 8.8 Hz, 2 H), 2.41 (m, 2 H), 1.53–1.19 (m, 48 H), 0.89–0.83 (m, 12 H), 0.04 (br. s, 3 H), 0.01 (br. s, 3 H) ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 173.9, 151.4, 130.8, 77.4, 70.2, 69.7, 40.3, 36.9, 36.2, 32.7, 32.6, 31.8, 29.6, 29.59–29.51, 29.2, 25.8, 25.7, 25.1, 22.6, 18.9, 18.0, 14.0, -4.4 ppm. HRMS: calcd. for C₃₉H₇₆O₅S₂Si [M + H]⁺ 717.4976; found 717.4971.

(S)-3-{(2R,13S)-2,13-Dihydroxy-14-[(2-{[(S)-2-hydroxydodecyl]thio}ethyl)thio|tetradecyl}-5-methylfuran-2(5H)-one (5): Compound 33 (33 mg, 46 µmol) was dissolved in MeOH (0.3 mL), and AcCl (33 µL, 464 µmol) in MeOH (0.2 mL) was added at room temp. under an argon atmosphere. The mixture was stirred for 50 min, and the reaction progress was monitored by TLC analysis. When the starting material had been consumed, solid NaHCO3 was added, and after stirring for 5 min, the mixture was filtered through a silica plug. The filtrate was concentrated in vacuo to dryness. The residue was purified by flash chromatography (2% MeOH in CH_2Cl_2) to give 5 (24 mg, 89%) as a white solid. ¹H NMR $(400.1 \text{ MHz}, \text{CDCl}_3)$: $\delta = 7.18 \text{ (m, 1 H)}, 5.06 \text{ (qd, } J = 6.8, 1.4 \text{ Hz},$ 1 H), 3.84 (m, 1 H), 3.65 (m, 2 H), 2.77 (m, 5 H), 2.57–2.32 (m, 5 H), 1.53-1.39 (m, 6 H), 1.43 (d, J = 6.8 Hz, 3 H), 1.36-1.22 (m, 32 H), 0.87 (vt, 3 H) ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 174.6, 151.8, 131.2, 77.9, 70.0, 69.7, 69.7, 40.3, 37.3, 36.3, 33.3, 32.5, 31.9, 29.6–29.3, 25.7, 25.5, 22.6, 19.1, 14.1 ppm. IR: $\tilde{v} = 3421$, 2916, 2850, 1739, 1465, 1323, 1199, 1080, 1026, 721 cm⁻¹. HRMS: calcd. for $C_{33}H_{62}O_5S_2 [M + H]^+$ 603.4111; found 603.4113.

(*S*)-1-({2-[(2-Mercaptoethyl)thio]ethyl}thio)dodecan-2-ol (34): 2,2'-Thiodiethanethiol (332 µL, 2.54 mmol) was added to a solution of epoxide (*S*)-9 (156 mg, 0.84 mmol) and InCl₃ (18 mg, 84 µmol) in *i*PrOH (2 mL), and the mixture was stirred at room temp. for 1.5 d. Then the mixture was concentrated in vacuo, and the residue was purified by flash chromatography (5% EtOAc in petroleum ether) to give **34** (153 mg, 53%) as an opaque waxy solid. ¹H NMR (400.1 MHz, CDCl₃): δ = 3.64 (m, 1 H), 2.82–2.67 (m, 9 H), 2.48 (dd, *J* = 13.6, 8.6 Hz, 1 H), 2.38 (br. s, 1 H), 1.72 (m, 1 H), 1.54– 1.18 (m, 18 H), 0.86 (vt, 3 H) ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 69.6, 40.3, 36.2, 32.5, 32.2, 31.8, 29.56, 29.54, 29.53, 29.50, 29.2, 25.6, 24.7, 22.6, 14.0 ppm. IR: \tilde{v} = 3433, 2916, 2846, 1465, 1423, 1199, 1087, 1049, 721, 678 cm⁻¹. HRMS: calcd. for C₁₆H₃₄OS₃ [M + H]⁺ 339.1844; found 339.1838.

(S)-3-[(2R,13S)-2-[(tert-Butyldimethylsilyl)oxy]-13-hydroxy-14-({2-[(2-{[(S)-2-hydroxydodecyl]thio}ethyl)thio]ethyl}thio)tetradecyl]-5-methylfuran-2(5H)-one (35): Sulfide 34 (32 mg, 95 µmol) was added to a solution of 8 (27 mg, 63 µmol) and InCl₃ (2 mg, 12 µmol) in CH₂Cl₂ (0.6 mL), and the mixture was stirred overnight at room temp. Then the mixture was concentrated in vacuo, and the residue was purified by flash chromatography (20% EtOAc in petroleum ether) to give 35 (33 mg, 68%) as an opaque waxy solid. ¹H NMR (400.1 MHz, CDCl₃): δ = 7.12 (m, 1 H, major isomer), 7.10 (m, 0.06 H, minor isomer), 5.00 (m, 1 H), 3.94 (m, 1 H), 3.70-3.61 (m, 2 H), 2.80-2.73 (m, 10 H), 2.50 (dd, J = 13.6, 8.6 Hz, 2 H), 2.42 (m, 2 H), 1.53-1.19 (m, 52 H), 0.90-0.83 (m, 14 H), 0.05 (br. s, 3 H), 0.02 (br. s, 3 H) ppm. ¹³C NMR (100.6 MHz, $CDCl_3$): $\delta = 174.0, 151.4, 130.8, 77.4, 70.2, 69.8, 40.3, 36.9, 36.3,$ 32.7, 32.5, 32.4, 31.8, 29.69, 29.62–29.5 (overlapping signals), 29.3, 25.8, 25.7, 25.1, 22.6, 18.9, 18.0, 14.0, -4.44, -4.45 ppm. IR: $\tilde{v} =$ 3448, 2924, 2854, 1751, 1462, 1253, 1076, 1026, 837, 775 cm⁻¹. HRMS: calcd. for C₄₁H₈₀O₅S₃Si [M + H]⁺ 777.5009; found 777.5016.

(S)-3-[(2R,13S)-2,13-Dihydroxy-14-($\{2-[(2-\{[(S)-2-hydroxy-dodecyl]thio\}ethyl\}thio]ethyl}thio)tetradecyl]-5-methylfuran-2(5H)-one (6): Compound 35 (18 mg, 23 µmol) was dissolved in MeOH (1 mL), and AcCl (16 µL, 0.23 mmol) was added. The mixture was$

stirred overnight at room temp. Solid NaHCO₃ was added, the mixture was filtered through Celite, and the filtrate was concentrated in vacuo. The residue was purified by flash chromatography (2% MeOH in CH₂Cl₂) to give **6** (12 mg, 77%) as a white solid. ¹H NMR (400.1 MHz, CDCl₃): δ = 7.17 (m, 1 H), 5.05 (m, 1 H), 3.84 (m, 1 H), 3.70–3.60 (m, 2 H), 2.79–2.73 (m, 10 H), 2.53–2.45 (m, 2 H), 2.27 (br. s, 3 H), 1.54–1.20 (m, 43 H), 0.87 (vt, 3 H) ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 174.5, 151.7, 131.2, 77.9, 69.9, 69.83, 69.82, 40.3, 37.4, 36.3, 36.2, 33.3, 32.5, 32.4, 31.8, 29.6, 29.59, 29.58, 29.55, 29.49, 29.48, 29.46, 29.3, 25.7, 25.6, 25.5, 22.6, 19.1, 14.0 ppm. IR: \tilde{v} = 3425, 2916, 2846, 1739, 1465, 1423, 1319, 1195, 1083, 1029, 736, 721 cm⁻¹. HRMS: calcd. for C₃₅H₆₆O₅S₃ [M + H]⁺ 663.4145; found 663.4141.

Supporting Information (see footnote on the first page of this article): Determination of enantiomeric ratio for (*S*)-9, determination of enantiomeric and diastereomeric ratios for epoxy-diol 13, ¹H and ¹³C NMR spectra for compounds 1–8, 11 and 22–35, HRMS spectra for aza and thio analogues 1–6.

Acknowledgments

The authors thank the Estonian Ministry of Education (project No. SF0180073s08 and SF0180027s08), the Archimedes Foundation (project No. 3.2.0501.10-0004), and the European Regional Development Fund through the Center of Excellence in Chemical Biology, Estonia for financial support. We are also grateful to Dr. Tõnis Pehk (National Institute of Chemical Physics and Biophysics, Tallinn, Estonia) for his help with NMR spectra, and Prof. Peter Somfai (Lund University, Sweden) for critically reading the manuscript.

- For recent reviews of isolated and synthesized acetogenins, see:
 a) C.-C. Liaw, T.-Y. Wu, F.-R. Chang, Y.-C. Wu, *Planta Med.* 2010, 76, 1390–1404;
 b) A. Bermejo, B. Figadère, M.-C. Zafra-Polo, I. Barrachina, E. Estornell, D. Cortes, *Nat. Prod. Rep.* 2005, 22, 269–303;
 c) F. Q. Alali, X.-X. Liu, J. L. McLaughlin, *J. Nat. Prod.* 1999, 62, 504–540.
- [2] D. J. Morré, R. de Cabo, C. Farley, N. H. Oberlies, J. L. McLaughlin, *Life Sci.* 1994, 56, 343–348.
- [3] a) P. S. Soltis, D. E. Soltis, Am. J. Bot. 2004, 91, 1614–1626; b)
 R. F. Thorne, Bot. Rev. 2000, 66, 441–647.
- [4] J. L. McLaughlin, J. Nat. Prod. 2008, 71, 1311-1321.
- [5] S. D. Jolad, J. J. Hoffmann, K. H. Schram, J. R. Cole, J. Org. Chem. 1982, 47, 3151–3153.
- [6] a) T. Motoyama, H. Yabunaka, H. Miyoshi, *Bioorg. Med. Chem. Lett.* 2002, *12*, 2089–2092; b) T. Hamada, N. Ichimaru, M. Abe, D. Fujita, A. Kenmochi, T. Nishioka, K. Zwicker, U. Brandt, H. Miyoshi, *Biochemistry* 2004, *43*, 3651–3658; c) M. Abe, A. Kenmochi, N. Ichimaru, T. Hamada, T. Nishioka, H. Miyoshi, *Bioorg. Med. Chem. Lett.* 2004, *14*, 779–782; d) K. Kuwabara, M. Takada, J. Iwata, K. Tatsumoto, K. Sakamoto, H. Iwamura, H. Miyoshi, *Eur. J. Biochem.* 2000, *267*, 2538–2546; e) H. Shimada, J. B. Grutzner, J. F. Kozlowski, J. L. McLaughlin, *Biochemistry* 1998, *37*, 854–866.
- [7] a) N. Kojima, T. Morioka, D. Urabe, M. Yano, Y. Suga, N. Maezaki, A. Ohashi-Kobayashi, Y. Fujimoto, M. Maeda, T. Yamori, T. Yoshimitsu, T. Tanaka, *Bioorg. Med. Chem.* 2010, 18, 8630–8641; b) N. Kojima, T. Tanaka, *Molecules* 2009, 14, 3621–3661; c) V. Coothankandaswamy, Y. Liu, S.-C. Mao, J. B. Morgan, F. Mahdi, M. B. Jekabsons, D. G. Nagle, Y.-D. Zhou, J. Nat. Prod. 2010, 73, 956–961.
- [8] M. Abe, A. Kubo, S. Yamamoto, Y. Hatoh, M. Murai, Y. Hattori, H. Makabe, T. Nishioka, H. Miyoshi, *Biochemistry* 2008, 47, 6260–6266.
- [9] a) N. Kojima, T. Fushimi, N. Maezaki, T. Tanaka, T. Yamori, *Bioorg. Med. Chem. Lett.* **2008**, *18*, 1637–1641; b) R. A. Duval,

G. Lewin, E. Peris, N. Chahboune, A. Garofano, S. Dröse, D. Cortes, U. Brandt, R. Hocquemiller, *Biochemistry* **2006**, *45*, 2721–2728; c) R. A. Duval, E. Poupon, V. Romero, E. Peris, G. Lewin, D. Cortes, U. Brandt, R. Hocquemiller, *Tetrahedron* **2006**, *62*, 6248–6257; d) S. Arndt, U. Emde, S. Bäurle, T. Friedrich, L. Grubert, U. Koert, *Chem. Eur. J.* **2001**, *7*, 993–1005; e) S. Hoppen, U. Emde, T. Friedrich, L. Grubert, U. Koert, *Chem. Eur. J.* **2001**, *7*, 993–1005; e) S. Hoppen, U. Emde, T. Friedrich, L. Grubert, U. Koert, *Angew. Chem.* **2000**, *112*, 2181–2184; *Angew. Chem. Int. Ed.* **2000**, *39*, 2099–2101.

- [10] Y. Chen, J.-W. Chen, S.-S. Xu, Y. Wang, X. Li, B.-C. Cai, N.-B. Fan, *Bioorg. Med. Chem. Lett.* **2012**, *22*, 2717–2719.
- [11] A. Guadaño, C. Gutiérrez, E. de la Peña, D. Cortes, A. González-Coloma, J. Nat. Prod. 2000, 63, 773–776.
- [12] For further reading on acetogenin mimics containing polyether units, see: a) Z.-J. Yao, H.-P. Wu, Y.-L. Wu, J. Med. Chem. 2000, 43, 2484–2487; b) B.-B. Zeng, Y. Wu, Q. Yu, Y.-L. Wu, Y. Li, X.-G. Chen, Angew. Chem. 2000, 112, 2010–2013; Angew. Chem. Int. Ed. 2000, 39, 1934–1937; c) S. Jiang, Y. Li, X.-G. Chen, T.-S. Hu, Y.-L. Wu, Z.-J. Yao, Angew. Chem. 2004, 116, 333–338; Angew. Chem. Int. Ed. 2004, 43, 329–334; d) H.-X. Liu, G.-R. Huang, H.-M. Zhang, S. Jiang, J.-R. Wu, Z.-J. Yao, ChemBiolChem. 2007, 8, 172–177; e) Q. Xiao, Y. Liu, Y. Qiu, G. Zhou, C. Mao, Z. Li, Z.-J. Yao, S. Jiang, J. Med. Chem. 2011, 54, 525–533.
- [13] H. Konno, N. Hiura, H. Makabe, M. Abe, H. Miyoshi, *Bioorg. Med. Chem. Lett.* 2004, 14, 629–632.
- [14] a) Q. Xiao, Y. Liu, Y. Qiu, Z. Yao, G. Zhou, Z.-J. Yao, S. Jiang, Bioorg. Med. Chem. Lett. 2011, 21, 3613–3615; b) M. Wang, J.-K. Shen, Chin. J. Synth. Chem. 2006, 14, 337–341.
- [15] S. Jiang, Z.-H. Liu, G. Sheng, B.-B. Zeng, X.-G. Cheng, Y.-L. Wu, Z.-J. Yao, J. Org. Chem. 2002, 67, 3404–3408.
- [16] H.-X. Liu, F. Shao, G.-Q. Li, G.-L. Xun, Z.-J. Yao, Chem. Eur. J. 2008, 14, 8632–8639.
- [17] a) C. Jacob, Nat. Prod. Rep. 2006, 23, 851–863; b) T. A. M. Gulder, B. S. Moore, Curr. Opin. Microbiol. 2009, 12, 252–260.
- [18] D. L. Howard, H. G. Kjaergaard, Phys. Chem. Chem. Phys. 2008, 10, 4113–4118.
- [19] a) S. E. Schaus, B. D. Brandes, J. F. Larrow, M. Tokunaga, K. B. Hansen, A. E. Gould, M. E. Furrow, E. N. Jacobsen, J. Am. Chem. Soc. 2002, 124, 1307–1315; b) L. P. C. Nielsen, C. P. Stevenson, D. G. Blackmond, E. N. Jacobsen, J. Am. Chem. Soc. 2004, 126, 1360–1362; c) P. Kumar, V. Naidu, P. Gupta, Tetrahedron 2007, 63, 2745–2785.
- [20] H. C. Kolb, M. S. VanNieuwenhze, K. B. Sharpless, *Chem. Rev.* 1994, 94, 2483–2547.
- [21] a) H. Lebel, E. N. Jacobsen, *Tetrahedron Lett.* 1999, 40, 7303–7306; b) G. Bartoli, M. Bosco, A. Carlone, M. Locatelli, P. Melchiorre, L. Sambri, *Org. Lett.* 2005, 7, 1983–1985.
- [22] a) S. Chow, W. Kitching, *Tetrahedron: Asymmetry* 2002, 13, 779–793; b) S. Chow, W. A. Koening, W. Kitching, *Eur. J. Org. Chem.* 2004, 1198–1201; c) X. Li, C. E. Burrell, R. J. Staples, B. Borhan, *J. Am. Chem. Soc.* 2012, 134, 9026–9029.
- [23] J. Bredihhina, P. Villo, K. Andersons, L. Toom, L. Vares, J. Org. Chem. 2013, 78, 2379–2385.
- [24] a) P. Duret, B. Figadère, R. Hocquemiller, A. Cavé, *Tetrahe-dron Lett.* **1997**, *38*, 8849–8852; b) J. A. Marshall, H. Jiang, *J. Org. Chem.* **1999**, *64*, 971–975.
- [25] The ratio of enantiomers was determined by chiral GC analysis using a permethylated β -cyclodextrin column (30 m×0.25 mm ID×0.25 µm film thickness, Chrompack).
- [26] L. Toom, P. Villo, I. Liblikas, L. Vares, Synth. Commun. 2008, 38, 4295–4313.
- [27] For the determination of *er*, see Exp. Sect. for (*S*)-9 and Supporting Information.
- [28] For the determination of *er* and *dr*, see Exp. Sect. for **13** and Supporting Information. For the characterization of the thiol derivative, see ref.^[23]
- [29] M. J. Martinelli, N. K. Nayyar, E. D. Moher, U. P. Dhokte, J. M. Pawlak, R. Vaidyanathan, Org. Lett. 1999, 1, 447–450.

- [31] H. Tominaga, N. Maezaki, M. Yanai, N. Kojima, D. Urabe, R. Ueki, T. Tanaka, *Eur. J. Org. Chem.* **2006**, 1422–1429.
- [32] G. J. Florence, J. C. Morris, R. G. Murray, J. D. Osler, V. R. Reddy, T. K. Smith, Org. Lett. 2011, 13, 514–517.
- [33] H. Zhao, J. S. T. Gorman, B. L. Pagenkopf, Org. Lett. 2006, 8, 4379–4382.
- [34] a) J. S. Yadav, A. R. Reddy, A. V. Narsaiah, B. V. S. Reddy, J. Mol. Catal. A 2007, 261, 207–212; b) T. Ollevier, E. Nadeau, Tetrahedron Lett. 2008, 49, 1546–1550.
- [35] Additionally to the conditions for aminolysis of epoxides explored in ref.^[26], transition metal chlorides FeCl₃, ZrCl₄, ZnCl₂, and InCl₃ were tested, as well as triflates Sc(OTf)₃, La(OTf)₃, Yb(OTf)₃, and Bi(OTf)₃. At room temp., these Lewis acids all catalysed the reaction to give the desired product in ca. 30% yield. Microwave conditions were also investigated with Bi(OTf)₃, but this led to the formation of by-products.

- ____Eurjoc
- [36] S. C. Miller, T. S. Scanlan, J. Am. Chem. Soc. 1997, 119, 2301–2302.
- [37] J. S. Yadav, B. V. S. Reddy, G. Baishya, Chem. Lett. 2002, 9, 906–907.
- [38] N. Kojima, M. Abe, Y. Suga, K. Ohtsuki, T. Tanaka, H. Iwasaki, M. Yamashita, H. Miyoshi, *Bioorg. Med. Chem. Lett.* 2013, 23, 1217–1219. See also the literature references given under ref.^[9]
- [39] N. Li, K. Ragheb, G. Lawler, J. Sturgis, B. Rajwa, J. A. Melendez, J. P. Robinson, J. Biol. Chem. 2003, 278, 8516–8525.
- [40] MTS: 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium salt.
- [41] D. C. Braddock, S. A. Hermitage, L. Kwok, R. Pouwer, J. M. Redmond, A. J. P. White, *Chem. Commun.* 2009, 1082–1084.
- [42] K. J. Quinn, L. Islamaj, S. M. Couvertier, K. E. Shanley, B. L. Mackinson, *Eur. J. Org. Chem.* 2010, 5943–5945.

Received: May 24, 2013 Published Online: September 9, 2013

Eur. J. Org. Chem. 2013, 6886-6899