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Abstract: A four-step protocol for the synthesis of 2-fluoromethyl and 2-hydroxymethyl 4-alkyl 
furans la  and lb from a-alkyl acroleins 4 and 1-bromo-l-trimethylsilylethylene (5) via allene oxides 
2 is elaborated, and is applied to the preparation of steroid furans 10, 11, 14 and 15 from oc,[~- 
unsaturated aldehyde 8. Copyright © 1996 Published by Elsevier Science Ltd 

Substituted furans occur widely in nature, find application in a variety of commercial  products, and 

play an important role in heterocyclic chemistry. 1 Numerous synthetic methods to obtain substituted furans 

have been developed, 2 however, 2,4-disubstituted furans are difficult to prepare and accessible starting 

materials are limited. Previously, 2,4-disubstituted furans were synthesized from acyclic precursors, 3 

lactones 4 and by substitution of the furan ring. 5 

During the course of our investigations of the synthetic utility of allene oxides, 6 we anticipated that 

2,4-disubstituted furans 1 with a hydroxymethyl or fluoromethyl substituent at the 2-position and an alkyl 

group at the 4-posit ion of the aromatic ring should be available by opening of allene oxide 2 with an 

appropriate nucleophile (Scheme 1). The allene oxide precursors, diepoxysilane 3, could be synthesized from 

the reaction of easily accessible c~-substituted acroleins 47 with vinylsilane 5 followed by epoxidation of 

double bond and elimination of the hydroxyl group. 
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Scheme 1 

To verify our hypothesis,  several u,[~-unsaturated aliphatic aldehydes 4 (R=n-butyl ,  n -hexyl ,  

cyclopentyl,  cyclohexyl) were chosen for transformation into the corresponding furans. In addition, we 

wanted to synthesize 2-fluoromethyl and 2-hydroxymethyl furans connected at their 4-position to a steroid at 

C-17 to learn if  these as yet unknown steroid furans with 3[3-hydroxy-a 5 as well as 4-en-3-one functionalities 

will show interesting biological activity. 
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The reaction of 1-bromo-l-trimethylsilylethylene (5)/n-BuLi with cc,13-unsaturated aldehydes 4 

produced exclusively the allylic alcohols 6 (Scheme 2). Oxidation of both double bonds with t- 

BuOOH/VO(acac)28 followed by reaction with MsC1 provided the key diepoxymesylates 7 in 89-92% yields. 

In accordance with our plan, the structure of compounds 7 contained all necessary functionality for allene 

oxide formation and for the furan ring closure. 

Br [[ 5 e  3 , , , , , , ~  SIM 1. t-BuOOH, TBAF (2 eq)for X=F 
OH VO(acac)2 OMs TBAF (1 eg), 1-120 (10 eq) 

~ . C H O  n-BuU " ~ S i M e 3  2. Mscl ~ . . ~  SiM. for X=OH 

R 95-97% " R " 89-92% ~" i~ I ~ O  ~" 
[ R=n'C4H, 1 

4 / n-Cell,31 6 7 
/ c-C6H,~ / 
[ c-c,~,o J 

o•X O 

R 
I a X=F 
l b  X=OH 

Scheme 2 

For the preparation of fluorofurans, compounds 7 were treated with 2.5 eq of TBAF,3H20 in THF (rt, 20 

rain) to produce the corresponding furan l a  as the major product in 65-75% yield [IH NMR, 8, 5.21 (2H, d, 

JHF 49.8 Hz), 6.38 (IH, d, J 5.7 Hz), 7.23 (1H, d, J 4.2 Hz)] accompanied by the hydroxymethyl 

compound l b  in 18-25% yield [IH NMR, 8, 4.56 (2H, s), 6.18 (1H, s), 7.16 (1H, s)]. On the other hand, 

treatment of 7 with 1 eq of TBAFo3H20 and an additional 10 eq of water afforded exclusively hydroxymethyl 

furan l b  (65-80%). It is worth mentioning that the one-pot formation of furan derivatives l a  and lb  from 

acyclic precursors 7 is the result of several consecutive reactions: i) fluoride promoted formation of allene 

oxide, ii) opening of epoxide ring of allene oxide by fluoride (or water) with formation of an enol, iii) 

tautomerization into the keto form, iv) rearrangement of the a-methylene-l~,7-epoxy ketone to the a,13- 

unsaturated-,/-hydroxy ketone, v) attack of the hydroxyl group on the carbonyl group with ring closure to 

form the hemiacetal, vi) dehydration of the hemiacetal to the desired 2-fluoro- or 2-hydroxymethylfurans. 

To synthesize steroidal fluoromethyl- and hydroxymethylfurans, the ml~-unsaturated aldehyde 89 

(Scheme 3) was treated, in an analogous manner to that described above, with 1-bromo-1- 

trimethylsilylethylene (5)/n-BuLi giving the allylic alcohols as a mixture of epimers at C-22. 
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Scheme 3 

Epoxidation with t-BuOOH/VO(acac)2 afforded the diastereomeric hydroxyepoxides which were esteryfied 

with MsC1 producing epoxymesylates 9. Since all newly created chiral centers will disappear in the final 

product, their diastereomeric ratios were not investigated. For the preparation of the steroid furan with a 

fluoromethyl substituent, compound 9 was treated with 3.5 eq of TBAFo3H20 in THF (rt, 20 rain) to 

produce, in 90% yield, an 85:15 mixture of fluoromethylfuran 10 and hydroxymethylfuran 11, respectively. 

On the other hand, treatment of 9 with 2 eq of TBAF.3H20 and additional 10 eq of water afforded 11 (78%). 
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To synthesize steroid furans with 4-en-3-one functionality, the silyl protective group in compound 9 

was removed and alcohol 12 (Scheme 4) was oxidized with PCC in the presence of 4~ molecular sieves to the 

deconjugated ketone 13. Then, treatment of 13 with 2.5 eq of TBAFo3H20 gave fluoromethylfuran 14 

(67%) and hydroxymethylfuran 15 (8%). Under the conditions for furan ring closure the migration of the 

5,6-double bond to form the enone system occurred. On the other hand, compound 15 was obtained in good 

yield (71%) by treatment of 13 in THF solution at rt with 1 eq of TBAF and 10 eq of water. 10,11 
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Scheme 4 

The described work presents a novel, simple, four-step protocol for the synthesis of 2,4-substituted 

furans via allene oxides starting from easily accessible t~-substituted acroleins and 1-bromo-1- 

trimethylsilylethylene. Because the application of a number of possible nucleophiles for allene oxide opening 

is described in the literature, 12 one should expect, that other nucleophiles would also react with 2 thus giving a 

variety of 2,4-disubstituted furans. With regard to the introduction of fluorine in the substituent at C-2 of the 

furan ring, which occurred relatively rapidly (ca 20-30 min) under very mild conditions and in the last stage of 

the synthesis, one can foresee the potential value of the present method in Positron Emission Tomography 

(PET) 13 for labeling molecules with isotope 18F. 
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