ORIGINAL PAPER

Synthesis and further rearrangements of 7-(2-cycloalken-1-yl)-8quinolinols

Mercedesz Törincsi · Pal Kolonits · Lajos Novak

Received: 11 November 2013/Accepted: 24 January 2014/Published online: 8 April 2014 © Springer-Verlag Wien 2014

Abstract Rearrangement reaction of 8-(cycloalkenyloxy)quinolines and the acid-catalyzed cyclization of the products were investigated. These reactions afforded insights on interesting new heterocyclic systems. Depending on the size of the cycloalkenyl moiety, we could isolate benzofuro [3,2-h]quinoline, methanooxecino[3,2-h]quinoline, methanooxonino[3,2-h]quinoline, and/or spiro[cycloalkano-1,2'furo[3,2-h]quinoline. The mechanism of the novel rearrangement reactions is also discussed.

Keywords Claisen rearrangement · Cyclization · Furo-quinoline · Oxecino-quinoline · Oxonino-quinoline · Ring constriction

Introduction

8-Hydroxyquinoline, a chelating agent, was a very versatile reagent in various organic reactions [1–8]. It was used as a stabilizer of hydrogen peroxide in rocket fuel oxidizers. The copper-8-quinolate, as well as the heterocyclic compound itself, exhibits antiseptic, growth inhibition, and pesticidal properties [9, 10]. The 8-alkoxyquinolinium salts, especially the lower ethers, also have significant antibacterial activities [11]. 8-Tosylaminoquinoline suppresses macrophage-mediated inflammation by inhibition of the production of NO and PGE [12, 13].

M. Törincsi · P. Kolonits · L. Novak (🖂)

Recently we have developed efficient methods for the preparation of heteroaromatic compounds by Claisen rearrangement and subsequent cyclization [14–17]. With the aim of continuing efforts to synthesize novel hetero-cyclic compounds, we have examined the preparation of 8-(cycloalkyloxy)quinolines, their sigmatropic rearrangement reactions, and subsequent acid catalyzed cyclizations. We report here the results and the preparation of new tetracyclic compounds.

Results and discussion

8-(Cycloalkyloxy)quinolines **3** (Scheme 1) were prepared from 8-hydroxyquinoline (1). Treatment of **1** with sodium hydride afforded the corresponding anion, which was then reacted with 3-bromocycloalk-1-enes **2**. These reactions gave 8-(cycloalkyloxy)quinolines **3** in good to excellent yields. The products were then subjected to thermalassisted and/or microwave-assisted electrocyclic reaction. The thermal reactions were performed in chlorobenzene at reflux, and the Claisen rearrangement needed 80 h to give compounds **4** in acceptable yield. We obtained essentially the same yield when we kept ethers **3** at 130 °C for 8 h under microwave irradiation.

The acid-catalyzed intramolecular cyclization of compounds **4** was performed with sulfuric acid at 100 °C. Starting with **4a**, the cyclization reaction afforded, besides the expected benzofuro[3,2-*h*]quinoline **5a**, the isomeric methanooxocino[3,2-*h*]quinoline **6a**, in a ratio of 1:2; i.e., the 6-*exo*trig-like process was favorable [18–20]. The cyclization reaction was significantly faster when we used the more acidic trifluoromethanesulfonic acid (p $K_a = -15$). The reaction took place at r.t. and yielded predominantly compound **6a** (38 %), besides a small amount of compound **5a** (6 %).

Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Research Group for Alkaloid Chemistry, Hungarian Academy of Sciences, Gellért tér 4, Budapest 1111, Hungary e-mail: l-novak@mail.bme.hu

Scheme 1

The structure and stereochemistry of the new compounds 5a and 6a were established by spectroscopic methods. For instance, an HPLC-MS experiment of compound 6a showed a molecular ion peak at m/z = 225, indicating a molecular formula C₁₅H₁₅NO. All proton and carbon signals of this compound were assigned after extensive NMR measurements using COSY, HMQC, and HMBC techniques. ¹H and ¹³C NMR, especially NOE studies, verified the structure and the cis-fused arrangement. Namely, the proton spectrum showed the presence of four methylene groups; among them, the one showing up at $\delta = 1.98$ and 2.06 ppm correlated with the methylene at C-13. Furthermore, the two broad singlet peaks (3.15 and 4.99 ppm), one of them originating from an oxymethine proton, could be attributed to the protons at the annelation (C-2 and C-6). The cis-annelation was confirmed by NOE correlation. The important NOE interactions of compound **6a** are shown in Fig. 1.

In the analogue cyclization reaction of the homolog **4b** we obtained furo[3,2-h]quinoline **5b** and a spiro analog **7a** approximately in equal amounts, in both sulfuric acid-catalyzed and trifluoromethanesulfonic acid-catalyzed processes (yields 39 and 46 %, respectively). The formation of the spiro compound could be the result of a consecutive [1,2]-alkyl migration, [1,2]-H shift, and cyclization (Scheme 2).

Acid-catalyzed intramolecular cyclization of compound **4c** afforded a mixture of three compounds in a ratio of 5:5:1 (yield 56 %). Here, besides the expected methanooxecino [3,2-*h*]quinoline **6b** and the spiro compound **7b**, we also isolated a methyl-substituted compound **8**. The structure of the latter was established by ¹H and ¹³C NMR spectra, and NOE investigation. The ¹H NMR spectrum of compound **8** was similar to that of **6b** except the presence of a signal of a methyl group ($\delta = 1.70$ ppm). The carbon signal ($\delta = 31.96$ ppm) also suggested the presence of a methyl group in the molecule. The significant NOE correlation between the methyl protons and the protons at C-14, and the lack of same with the annellation proton at C-7 (3.21 ppm), suggested the *cis*-fused structure (Fig. 1).

A plausible mechanism for the formation of compound **8** is proposed in Scheme 3. On the protonated starting compound **9c**, the [1,2]-alkyl migration took place, which relieved the strain of the cyclooctenyl moiety of the molecule. Deprotonation of the intermediate **12** yielded compound **13**, on which acid-catalyzed intramolecular cyclization afforded compound **8** (the same type of ring constriction reaction was observed earlier during the bromination of *trans*-cyclooctene [21, 22]).

Fig. 1 Selected NOE correlations of compounds 6a and 8

Scheme 2

In summary, novel heterocyclic compounds have been prepared from 8-(cycloalkenyloxy)quinolines by thermal rearrangement followed by acid-catalyzed cyclization. The present synthetic schemes would enable access to a variety of furoquinolines, oxocinoquinolines, oxecinoquinolines, and spiro analogues, which would have interesting biological properties.

Experimental

Solvents were used as received from commercial suppliers, and no further attempts were made to purify or dry them. Melting points were determined on a Büchi apparatus. Infrared (IR) spectra were recorded on a Bruker Alpha FT spectrophotometer. ¹H NMR and ¹³C NMR spectra were obtained on a Bruker DRX-500 spectrometer operating at 500 and 125 MHz, respectively. All NMR spectra are reported in ppm relative to TMS. MS spectra were conducted on Agilent 6140 quadrupole LC/MS instrument (ESI was +2 kV). Microwave irradiation was carried out using a CEM Explorer microwave reactor equipped with an automatic temperature controller and auto sampler (CEM Corporation, Matthews, NC). Liquid chromatography was conducted on the Agilent LCQ101 LC/MS (column: Gemini 3 μ C18, 50 × 3 mm; solvent H₂O) instrument. Merck precoated silica gel 60 F₂₅₄ plates were used for TLC, and Kieselgel 60 for column chromatography.

Quinolin-8-ol (1) was obtained from a commercial source and was of the highest grade available. 3-Bromocyclohex-1-ene (2a) [23], 3-bromocyclohept-1-ene (2b) [24], and 3-bromocyclooct-1-ene (2c) [25] were prepared using their literature procedures.

General procedure for preparation of 8-(cycloalk-2-enyloxy)quinolines **3**

To a cold-stirred suspension of NaH (12 mmol, 80 % in mineral oil) in 10 cm³ DME, a solution of 1.0 g quinolin-8ol (1, 6.88 mmol) in 30 cm³ DME was added dropwise, and the resulting mixture was stirred at 0 °C for 2 h. To this mixture the appropriate bromine **2** (10 mmol) was added dropwise, and stirring was continued at r.t. for 24 h. The reaction mixture was quenched with 100 cm³ brine and extracted with EtOAc (4 × 50 cm³). The combined

Scheme 3

organic layers were washed with 1 N NaOH solution and water, and then dried over $MgSO_4$. Evaporation of the solvent under reduced pressure provided a residue which was purified by column chromatography on silica gel using hexane–EtOAc 6:1 as the eluent.

8-(2-Cyclohexen-1-yloxy)quinoline (3a, C₁₅H₁₅NO)

Yellow oil; yield 56 %; TLC: $R_{\rm f} = 0.29$ (hexane-EtOAc = 4:1); IR (KBr): $\bar{v} = 1,650, 1,610, 1,560, 1,500, 1,470, 1,370, 1,310, 1,260, 1,100 {\rm cm}^{-1}; {}^{1}{\rm H}$ NMR (CDCl₃): $\delta = 1.70$ (m, 1H, C_{5'}-H), 1.96 (m, 1H, C_{5'}-H), 2.07 (m, 1H, C_{4'}-H), 2.10 (m, 2H, C_{6'}-H), 2.15 (m, 1H, C_{4'}-H), 5.12 (br s, 1H, C_{1'}-H), 5.98 (m, 1H, C_{3'}-H), 6.02 (d, J = 11 Hz, 1H, C_{2'}-H), 7.12 (d, J = 8 Hz, 1H, C₇-H), 7.36 (d, J = 8 Hz, 1H, C₅-H), 7.38 (dd, J = 8 Hz, 4 Hz, 1H, C₃-H), 7.42 (t, J = 8 Hz, 1H, C₆-H), 8.09 (d, J = 8 Hz, 1H, C₄-H), 8.95 (dd, J = 4 Hz, 1 Hz, 1H, C₂-H) ppm; ${}^{13}{\rm C}$ NMR (CDCl₃): $\delta = 19.53$ (C-5'), 25.08 (C-4'), 28.17 (C-6'), 72.31 (C-1'), 110.65 (C-7), 119.48 (C-5), 121.31 (C-3), 126.32 (C-2'), 126.45 (C-6), 129.65 (C-4a), 131.99 (C-3'), 135.73 (C-4), 141.04 (C-8a), 149.22 (C-2), 153.69 (C-8) ppm.

8-((Z)-Cyclohept-2-enyloxy)quinoline (**3b**, C₁₆H₁₇NO) Yellow oil; yield 46 %; TLC: $R_f = 0.3$ (hexane-acetone = 5:2); IR (KBr): $\bar{v} = 1,625, 1,570, 1,510, 1,480,$ 1,450, 1,380, 1,320, 1,260, 1,100 cm⁻¹; ¹H NMR (CDCl₃): $\delta = 1.42$ (m, 1H, C_{5'}-H), 1.73 (m, 1H, C_{6'}-H), 1.80 (m, 1H, C_{5'}-H), 2.04 (m, 1H, C_{7'}-H), 2.10 (m, 1H, C_{6'}-H), 2.19 (m, 1H, $C_{4'}$ –H), 2.28 (m, 1H, $C_{4'}$ –H), 2.30 (m, 1H, $C_{7'}$ –H), 5.18 (m, 1H, C_{1'}-H), 5.91 (m, 1H, C_{3'}-H), 5.98 (m, 1H, $C_{2'}$ -H), 7.03 (d, J = 8 Hz, 1H, C_{7} -H), 7.37 (d, J = 8 Hz, 1H, C₅-H), 7.42 (m, 2H, C₃-H and C₆-H), 8.12 (d, J = 8 Hz, 1H, C₄-H), 8.97 (d, J = 3.5 Hz, 1H, C₈-H) ppm; ¹³C NMR (CDCl₃): $\delta = 26.47$ (C-5'), 27.94 (C-6'), 28.60 (C-4'), 33.22 (C-7'), 78.60 (C-1'), 110.46 (C-7), 119.37 (C-5), 121.48 (C-3), 126.69 (C-6), 129.68 (C-4a), 130.60 (C-3'), 136.05 (C-2'), 136.15 (C-4), 140.55 (C-8a), 149.20 (C-2), 153.45 (C-8) ppm; MS: m/z (%) = 239 (M⁺, 100), 145 ($M^+ - C_7 H_{10}$, 16).

8-((Z)-2-Cycloocten-2-yloxy)quinoline (**3c**, C₁₇H₁₉NO) Yellow oil; yield 46 %; TLC: $R_{\rm f} = 0.45$ (hexaneacetone = 5:1); IR (KBr): $\bar{\nu} = 1,613, 1,595, 1,497,$ 1,468, 1,424, 1,374, 1,314, 1,258, 1,180 cm⁻¹; ¹H NMR (CDCl₃): $\delta = 1.49$ (m, 1H, C_{5'}–H), 1.57 (m, 1H, C_{6'}–H), 1.66 (m, 1H, C_{7'}–H), 1.71 (m, 1H, C_{7'}–H), 1.74 (m, 1H, C_{6'}–H), 1.78 (m, 1H, C_{5'}–H), 2.03 (m, 1H, C_{8'}–H), 2.24 (m, 1H, C_{4'}–H), 2.34 (m, 1H, C_{8'}–H), 2.37 (m, 1H, C_{4'}–H), 5.35 (m, 1H, C_{1'}–H), 5.70 (m, 1H, C_{2'}–H), 5.80 (m, 1H, C_{3'}–H), 7.05 (d, J = 8 Hz, 1H, C₇–H), 7.35 (d, J = 8 Hz, 1H, C₅–H), 7.41 (m, 1H, C₆–H), 7.43 (m, 1H, C₃–H), 8.13 (d, J = 8 Hz, 1H, C₄–H), 8.98 (d, J = 4 Hz, 1H, C₂–H) ppm; ¹³C NMR (CDCl₃): $\delta = 23.49$ (C-7'), 26.27 (C-6'), 26.81 (C-4'), 29.12 (C-5'), 35.82 (C-8'), 76.36 (C-1'), 110.50 (C-7), 119.25 (C-5), 121.38 (C-3), 126.82 (C-6), 129.54 (C-4a), 130.17 (C-3'), 132.95 (C-2'), 136.34 (C-4), 140.15 (C-8a), 149.03 (C-2), 153.88 (C-8) ppm.

General procedures for rearrangement of ethers 3

Method A A solution of ether **3** (3 mmol) in 50 cm³ chlorobenzene was kept at reflux for 80 h. The solvent was evaporated under reduced pressure, and the crude product was purified by column chromatography on silica gel (hexane–EtOAc = 4:1).

Method B Ether **3** (5 mmol) was kept at 130 °C for 8 h under microwave irradiation. After cooling, the reaction mixture was dissolved in a mixture of CH_2Cl_2 and acetone (5:2) and purified by column chromatography (hexane–EtOAc = 4:1).

7-(2-Cyclohexen-1-yl)-8-quinolinol (4a, C₁₅H₁₅NO)

Greenish crystalline solid; yield: method A 47 %, method B 52 %; m.p.: 97–98 °C; TLC: $R_{\rm f} = 0.52$ (hexane–EtOAc = 4:1); IR (KBr): $\bar{\nu} = 3,320$ (OH), 1,625, 1,505, 1,460, 1,370, 1,340, 1,280, 1,230, 1,090 cm⁻¹; ¹H NMR (CDCl₃): $\delta = 1.66$ (m, 1H, C₆'–H), 1.72 (m, 1H, C₅'–H), 1.77 (m, 1H, C₅'–H), 2.13 (m, 3H, C₄'–H and C₆'–H), 4.12 (m, 1H, C₁'–H), 5.74 (dd, J = 8 Hz, 1.5 Hz, 1H, C₅–H), 5.97 (m, 1H, C₅'–H), 7.28 (d, J = 8.5 Hz, 1H, C₅–H), 7.35 (dd, J = 8.2 Hz, 4 Hz, 1H, C₃–H), 7.43 (d, J = 8.5 Hz, 1H, C₆–H), 8.09 (d, J = 8.2 Hz, 1H, C₄–H), 8.46 (br s, 1H, OH), 8.74 (dd, J = 4 Hz, 1 Hz, 1H, C₂–H) ppm; ¹³C NMR (CDCl₃): $\delta = 21.43$ (C-5'), 25.11 (C-4'), 30.30 (C-6'), 34.86 (C-1'), 117.09 (C-5), 120.97 (C-3), 126.86 (C-4a), 127.77 (C-7), 128.00 (C-6), 128.81 (C-3'), 129.97 (C-2'), 135.89 (C-4), 138.05 (C-8a), 147.73 (C-2), 148.67 (C-8) ppm.

7-((Z)-2-Cyclohepten-1-yl)-8-quinolinol (4b, C₁₆H₁₇NO)

Light greenish crystals; yield: method A 52 %, method B 52 %; m.p.: 80–84 °C; TLC: $R_{\rm f} = 0.75$ (hexane–ace-tone = 5:2); IR (KBr): $\bar{\nu} = 3,340$ (OH), 1,640, 1,520, 1,475, 1,405, 1,380, 1,290, 1,240 cm⁻¹; ¹H NMR (CDCl₃): $\delta = 1.50$ (m, 1H, C_{5'}–H), 1.76 (m, 1H, C_{6'}–H), 1.83 (m, 1H, C_{5'}–H), 1.87 (m, 2H, C_{7'}–H), 1.98 (m, 1H, C_{6'}–H), 2.31 (m, 2H, C_{4'}–H), 4.27 (br s, 1H, C_{1'}–H), 5.78 (dd, J = 11 Hz, 2.5 Hz, 1H, C_{2'}–H), 5.93 (m, 1H, C_{3'}–H), 7.39 (d, J = 8.5 Hz, 1H, C₅–H), 7.48 (dd, J = 8 Hz, 4 Hz,

1H, C₃–H), 7.55 (d, J = 8.5 Hz, 1H, C₆–H), 8.28 (d, J = 8 Hz, 1H, C₄–H), 8.78 (d, J = 4 Hz, 1H, C₂–H), 9.8 (br s, 1H, OH) ppm; ¹³C NMR (CDCl₃): $\delta = 27.18$ (C-5'), 28.92 (C-4'), 30.38 (C-6'), 34.73 (C-7'), 40.14 (C-1'), 117.82 (C-5), 120.58 (C-3), 127.29 (C-4a), 128.83 (C-6), 132.27 (C-7), 132.30 (C-3'), 135.96 (C-2'), 136.00 (C-8a), 138.46 (C-4), 146.11 (C-2), 147.15 (C-8) ppm.

7-((Z)-2-Cycloocten-1-yl)-8-quinolinol (4c, C₁₇H₁₉NO)

Greenish crystals; yield: method A 49 %, method B 51 %; m.p.: 107–109 °C; TLC: $R_f = 0.2$ (hexane–EtOAc = 4:1); IR (KBr): $\bar{v} = 3,340, 1,505, 1,465, 1,452, 1,405, 1,380,$ 1,348, 1,300, 1,280, 1,180, 1,040 cm⁻¹; ¹H NMR (CDCl₃): $\delta = 1.44$ (m, 1H, C_{5'}-H), 1.63 (m, 1H, C_{6'}-H), 1.71 (m, 2H, C7'-H), 1.80 (m, 2H, C5'-H and C6'-H), 1.83 (m, 2H, C_{8'}-H), 2.18 (m, 1H, C_{4'}-H), 2.54 (m, 1H, C_{4'}-H), 4.45 (m, 1H, C_{1'}-H), 5.76 (m, 2H, C_{2'}-H and C_{3'}H), 7.34 (d, J = 8.5 Hz, 1H, C₅-H), 7.39 (dd, J = 8 Hz, 4 Hz, 1H, C₃-H), 7.54 (d, J = 8.5 Hz, 1H, C₆-H), 8.15 (d, J = 8 Hz, 1H, C₄–H), 8.74 (d, J = 4 Hz, 1H, C₂–H), 8.8 (br s, 1H, OH) ppm; ¹³C NMR (CDCl₃): $\delta = 26.26$ (C-7'), 26.47 (C-4'), 26.66 (C-6'), 29.68 (C-5'), 35.99 (C-1'), 36.69 (C-8'), 117.63 (C-5), 120.87 (C-3), 126.86 (C-4a), 127.65 (C-6), 128.63 (C-7), 129.68 (C-3'), 132.73 (C-2'), 136.64 (C-4), 137.53 (C-8a), 147.19 (C-2), 148.24 (C-8) ppm.

General procedures for cyclization of 7-(2-cycloalken-1-yl)-8-quinolinols 4

Method A A solution of 1.0 g compound 4 in 0.6 cm³ sulfuric acid was kept at 100 °C for 1 h. After cooling, the reaction mixture was poured into 10 cm³ water; the resulting solution was basified with 1 N NaOH solution and extracted with CHCl₃ (3 × 15 cm³). The combined organic layers were dried over MgSO₄ and the solvent was evaporated under reduced pressure. The residue was purified by column chromatography.

Method B A solution of 1.0 g compound 4 in 1 cm³ trifluoromethanesulfonic acid was stirred at r.t. for 1 h. The reaction mixture was poured in 1 N NaOH solution and extracted with CHCl₃ (3×15 cm³). The combined organic layers were dried over MgSO₄; solvent was evaporated in vacuo, and the residue was purified by column chromatography.

cis-6b,7,8,9,10,10a-Hexahydro[1]benzofuro[3,2-h]quinoline (**5a**, $C_{15}H_{15}NO$) and cis-3,4,5,6-tetrahydro-2H-2,6-methanooxocino[3,2-h]quinoline (**6a**, $C_{15}H_{15}NO$)

Compound **5a**: yield: method A 17 %, method B 6 %; light yellow oil; TLC: $R_f = 0.33$ (hexane–EtOAc 4:1); HPLC: $R_t = 3.764$ min; IR (KBr): $\bar{v} = 1,613, 1,588, 1,515, 1,450,$ 1,435, 1,360, 1,348, 1,312, 1,300, 1,260, 1,220, 1,176, 1,137 cm⁻¹; ¹H NMR (CDCl₃): $\delta = 1.37$ (m, 1H, C₈–H), 1.49 (m, 1H, C₇–H), 1.57 (m, 2H, C₈–H and C₉–H), 1.63 (m, 1H, C₉–H), 1.91 (m, 1H, C₁₀–H), 1.96 (m, 1H, C₇–H), 2.30 (m, 1H, C₁₀–H), 3.37 (m-q, J = 7 Hz, 1H, C_{6b}–H), 4.97 (m, 1H, C_{10a}-H), 7.31 (dd, J = 8 Hz, 4 Hz, 1H, C₃–H), 7.34 (d, J = 8 Hz, 1H, C₅–H), 7.39 (d, J = 8 Hz, 1H, C₆–H), 8.11 (d, J = 8 Hz, 1H, C₄–H), 8.85 (d, J = 4 Hz, 1H, C₂–H) ppm; ¹³C NMR (CDCl₃): $\delta = 20.21$ (C-9), 21.97 (C-8), 27.27 (C-10), 28.81 (C-7), 41.48 (C-6b), 84.06 (C-10a), 119.75 (C-5), 120.71 (C-3), 122.63 (C-6), 128.76 (C-4a), 131.63 (C-6a), 136.07 (C-4), 136.27 (C-11b), 149.64 (C-2), 154.75 (C-11a) ppm; MS: m/z (%) = 225 (M⁺, 100).

Compound 6a: yield: method A 35 %, method B 38 %; light yellow oil; TLC: $R_f = 0.28$ (hexane-acetone 5:2); HPLC: $R_t = 3.47$ min; IR (KBr): $\bar{v} = 1,578, 1,560, 1,500,$ 1,455, 1,430, 1,380, 1,356, 1,345, 1,326, 1,307, 1,246, 1,210, 1,195, 1,170, 1,111, 1,080, 1,072 cm⁻¹; ¹H NMR (CDCl₃): $\delta = 1.37$ (m, 1H, C₄–H), 1.48 (m, 1H, C₄–H), 1.64 (m, 1H, C₃-H), 1.83 (m, 1H, C₅-H), 1.85 (m, 1H, C₅-H), 1.98 (m, 1H, C₁₃-H), 2.06 (m, 1H, C₁₃-H), 2.31 (m, 1H, C₃-H), 3.12 (br s, 1H, C₆-H), 4.97 (br s, 1H, C₂-H), 7.17 (d, J = 8.2 Hz, 1H, C₇-H), 7.24 (d, J = 8.2 Hz, 1H, C_8 -H), 7.33 (dd, J = 8.2 Hz, 4.2 Hz, 1H, C_{10} -H), 8.05 (dd, J = 8 Hz, 1.2 Hz, 1H, C₉-H), 8.90 (dd, J = 4 Hz, 1.2 Hz, 1H, C₁₁–H) ppm; ¹³C NMR (CDCl₃): $\delta = 17.55$ (C-4), 29.60 (C-13), 32.27 (C-6), 32.90 (C-5), 33.55 (C-3), 72.35 (C-2), 118.19 (C-8), 121.14 (C-10), 124.44 (C-6a), 128.15 (C-7), 128.53 (C-8a), 136.19 (C-9), 139.41 (C-12a), 149.43 (C-11), 151.79 (C-12b) ppm; MS: m/z (%) = 225 $(M^+, 100).$

cis-7,8,9,10,11,11a-Hexahydro-6bH-cyclohepta-[4,5]furo[3,2-h]quinolone (**5b**, C₁₆H₁₇NO) and 3'H-spiro[cyclohexane-1,2'-furo[3,2-h]quinolone

(7a, C₁₆H₁₇NO)

Compound **5b**: yield: method A 19 %, method B 22 %; light yellow oil; TLC: $R_f = 0.2$ (hexane-acetone 4:1); IR (KBr): $\bar{v} = 1,622, 1,511, 1,461, 1,440, 1,423, 1,394, 1,368,$ $1,359, 1,307, 1,244, 1,134, 1,114, 1,077, 1,043, 907 \text{ cm}^{-1};$ ¹H NMR (CDCl₃): $\delta = 1.45$ (m, 3H, C₈-H, C₉-H, and C₁₀-H), 1.72 (m, 2H, C₈-H and C₉-H), 1.86 (m, 2H, C₇-H and C₁₀-H), 1.94 (m, 1H, C₇-H), 2.10 (m, 1H, C₁₁-H), 2.27 (m, 1H, C_{11} –H), 3.78 (m, t-d, J = 9.9 Hz, 3.5 Hz, 1H, C_{6b} -H), 5.25 (m, t-d, J = 10 Hz, 4 Hz, 1H, C_{11a} -H), 7.32 (br s, 2H, C₅–H and C₆–H), 7.34 (m, 1H, C₃–H), 8.11 (d, J = 8.5 Hz, 1H, C₄-H), 8.85 (d, J = 4 Hz, 1H, C₂-H) ppm; ¹³C NMR (CDCl₃): $\delta = 24.19$ (C-10), 28.62 (C-8), 31.22 (C-9), 31.64 (C-7), 31.81 (C-11), 47.50 (C-6b), 88.50 (C-11a), 119.35 (C-5), 120.79 (C-3), 123.22 (C-6), 128.89 (C-4a), 129.32 (C-6a), 135.46 (C-12b), 136.18 (C-4), 149.40 (C-2), 154.09 (C-12a) ppm; MS: m/z (%) = 239 (M⁺, 100).

Compound 7a: yield: method A 20 %, method B 24 %; light yellow oil; TLC: $R_{\rm f} = 0.5$ (hexane–EtOAc 4:1); IR

(KBr): $\bar{\nu} = 1,600, 1,566, 1,508, 1,460, 1,436, 1,361, 1,281, 1,253, 1,214, 1,184, 1,170, 1,078, 1,052, 1,037, 990 cm⁻¹; ¹H NMR (CDCl₃): <math>\delta = 1.51$ (m, 4H, C₃–H, C₄–H, and C₅–H), 1.83 (m, 2H, C₂–H and C₆–H), 1.95 (m, 2H, C₃–H and C₅–H), 2.02 (m, 2H, C₂–H and C₆–H), 3.22 (m, 2H, C₃–H d, 7.32 (d, J = 8 Hz, 1H, C₅–H), 7.38 (dd, J = 8 Hz, 1H, C₇–H), 7.38 (dd, J = 8 Hz, 4 Hz, 1H, C₇–H), 7.40 (d, J = 8 Hz, 1H, C₄–H), 8.18 (d, J = 8 Hz, 1H, C₆–H), 8.91 (d, J = 4 Hz, 1H, C₈–H) ppm; ¹³C NMR (CDCl₃): $\delta = 23.12$ (C-3 and C-5), 25.14 (C-4), 37.32 (C-2 and C-6), 41.53 (C-3'), 91.11 (C-1), 119.01 (C-5'), 120.56 (C-7'), 124.57 (C-4'), 125.21 (C-3a), 128.88 (C-5a'), 134.43 (C-9a'), 137.36 (C-6'), 148.67 (C-8'), 153.51 (C-9b') ppm; MS: m/z (%) = 239 (M⁺, 100).

3,4,5,6,7,8-Hexahydro-2H-2,8-methanooxecino[3,2-h]quinolone (**6b**, $C_{17}H_{19}NO$), 3'H-spiro[cycloheptane-1,2'furo[3,2-h]quinolone (**7b**, $C_{17}H_{19}NO$), and 2-methyl-2,3,4,5,6,7-hexahydro-2,7-methanooxonino[3,2-h]quinolone (**8**, $C_{17}H_{19}NO$)

Compound 6b: yield: method B 25 %; light yellow oil; $R_{\rm f} = 0.35$ (hexane-acetone 5:2); HPLC: TLC: $R_{\rm t} = 3.824$ min; IR (KBr): $\bar{v} = 1,502, 1,451, 1,413,$ $1,373, 1,259, 1,214, 1,086, 1,017 \text{ cm}^{-1}; {}^{1}\text{H NMR} (CDCl_3):$ $\delta = 1.30$ (m, 2H, C₄–H and C₆–H), 1.58 (m, 1H, C₅–H), 1.64 (m, 2H, C₃-H and C₇-H), 1.79 (m, 3H, C₄-H, C₅-H, and C₆-H), 2.13 (m, 1H, C₁₅-H), 2.35 (m, 1H, C₃-H), 2.42 (m, 1H, C₁₅–H), 2.45 (m, 1H, C₇–H), 3.02 (m, 1H, C₈–H), 4.81 (m, 1H, C₂–H), 7.26 (d, J = 8.5 Hz, 1H, C₉–H), 7.28 $(d, J = 8.5 \text{ Hz}, 1\text{H}, C_{10}\text{-H}), 7.34 (dd, J = 8 \text{ Hz}, 4 \text{ Hz}, 1\text{H},$ C_{12} -H), 8.06 (d, J = 8 Hz, 1H, C_{11} -H), 8.90 (d, J = 4 Hz, 1H, C₁₃–H) ppm; ¹³C NMR (CDCl₃): $\delta = 22.46$ (C-6), 23.72 (C-5), 24.59 (C-15), 30.39 (C-8), 30.62 (C-4), 30.86 (C-3), 36.18 (C-7), 74.19 (C-2), 118.08 (C-10), 120.78 (C-12), 125.75 (C-8a), 127.97 (C-9), 128.00 (C-10a), 135.72 (C-11), 140.57 (C-14a), 147.52 (C-14b), 149.07 (C-13) ppm; MS: m/z (%) = 253 (100).

Compound 7b: yield: method A 25 %; light yellow oil; TLC: $R_f = 0.52$ (hexane-acetone 5:2); HPLC: $R_{\rm t} = 4.174$ min; IR (KBr): $\bar{v} = 1,511, 1,462, 1,360,$ 1,311, 1,278, 1,259, 1,159, 1,080, 1,015 cm⁻¹; ¹H NMR (CDCl₃): $\delta = 1.52$ (m, 2H, C₃–H and C₆–H), 1.63 (m, 2H, C_4 -H and C_5 -H), 1.72 (m, 2H, C_4 -H and C_5 -H), 1.86 (m, 2H, C₃–H and C₆–H), 1.98 (m-dd, 2H, C₂–H and C₇–H), 2.26 (m-dd, 2H, C₂–H and C₇–H), 3.25 (s, 2H, C_{3'}–H), 7.29 $(d, J = 8.2 \text{ Hz}, 1\text{H}, C_{5'}\text{-H}), 7.32 (dd, J = 8.2 \text{ Hz}, 4.4 \text{ Hz},$ 1H, $C_{4'}$ -H), 7.35 (d, J = 8.2 Hz, 1H, $C_{7'}$ -H), 8.09 (dd, J = 8.5 Hz, 1.5 Hz, 1H, C₆-H), 8.86 (dd, J = 4.0 Hz, 1.5 Hz, 1H, C_{8'}–H) ppm; ¹³C NMR (CDCl₃): $\delta = 22.21$ (C-3 and C-6), 29.18 (C-4 and C-5), 40.73 (C-2 and C-7), 43.29 (C-3'), 94.36 (C-1), 118.93 (C-5'), 120.63 (C-4'), 124.00 (C-7'), 124.12 (C-3a'), 128.82 (C-5a'), 136.01 (C-6'), 136.05 (C-9a'), 149.51 (C-8'), 154.12 (C-9b') ppm; MS: m/z (%) = 253 (100).

Compound 8: yield: method B 6 %; light yellow oil; TLC: $R_{\rm f} = 0.29$ (hexane-acetone 5:2); HPLC: $R_{\rm t} = 3.802$ min; IR (KBr): $\bar{v} = 1,512, 1,462, 1,423,$ 1,394, 1,368, 1,359, 1,308, 1,289, 1,244, 1,134, 1,114, 1,077, 1,043 cm⁻¹; ¹H NMR (CDCl₃): $\delta = 1.35$ (m, 2H, C₄-H and C₅-H), 1.50 (m, 1H, C₅-H), 1.68 (m, 1H, C₄-H), 1.70 (s, 3H, CH₃), 1.87 (m, 1H, C₆-H), 1.95 (m, 1H, C₃-H), 2.00 (m, 1H, C₃-H), 2.21 (m, 3H, C₆-H and C₁₄-H), 3.21 (m, 1H, C₇–H), 7.35 (d, J = 8.5 Hz, 1H, C₉–H), 7.40 $(d, J = 8.5 \text{ Hz}, 1\text{H}, C_8\text{-H}), 7.45 (dd, J = 8 \text{ Hz}, 3 \text{ Hz}, 1\text{H},$ C_{11} -H), 8.20 (d, J = 8.5 Hz, 1H, C_{10} -H), 9.03 (d, J = 3 Hz, 1H, C₁₂-H) ppm; ¹³C NMR (CDCl₃): $\delta = 24.04$ (C-5), 26.97 (C-4), 31.96 (CH₃), 33.16 (C-7), 35.30 (C-6), 37.01 (C-14), 42.94 (C-3), 78.72 (C-2), 118.20 (C-9), 120.73 (C-11), 125.59 (C-7a), 128.18 (C-9a), 128.47 (C-8), 137.61 (C-10), 138.00 (C-13a), 148.09 (C-12), 149.02 (C-13b) ppm; MS: m/z (%) = 253 (100).

References

- 1. Philips JP (1956) Chem Rev 56:271
- Arias A, Fortuno J, Counselo M, Martin A, Mastrorilli P, Todisco S, Latronico M, Gallo V (2013) Inorg Chem 52:5493
- 3. Panda BK (2012) J Inorg Chem 2:49
- 4. Khale AA (2013) J Poly Res 20:1
- Sosic I, Markovic B, Arenz K, Stefane B, Kos J, Gobec S (2013) J Med Chem 56:521
- Zhang L, Wen G, Xiu Q, Guo L, Deng J, Zhong C (2012) J Coord Chem 65:1632
- Alam MM, Shaharyar M, Hamid H, Nazreen S, Haider A, Alam MS (2011) Med Chem 7:663

- 8. Chen Y, Wang H, Wan L, Bian Y, Yang J (2011) J Org Chem 76:3774
- Richardson WH, Hodge RL, Glover DW, Pompeo MP, Hayden CG (2005) Composition for wood treatment comprising an injectable aqueous wood preservative slurry having sparinglysoluble biocidal particles and pigments. PCT Int Appl WO 2005115704 A2, Dec 8, 2005. Chem Abstr 144:24100
- Richardson WH, Hodge RL, Glover DW, Pompeo MP, Hayden CG (2005) Composition, method of making, and treatment of wood with an injectable wood preservative slurry having biocidal particles. PCT Int Appl WO 2005110692 A2, Nov 24, 2005. Chem Abstr 143:479586
- 11. Foye OW, Marshall RJ (1964) J Pharm Sci 53:1338
- Byeon JY, Yoo DS, Yu T, Yang Y, Kim JH, Kim E, Jeong D, Rhee MH, Choung ES, Hong S, Cho JY (2012) Acta Pharm Sin 33:1037
- 13. Jung Y (2013) Pharmazie 68:146
- 14. Törincsi M, Kolonits P, Palosi E, Novak L (2007) Synthesis 284
- Törincsi M, Kolonits P, Palosi E, Fekete J, Novak L (2008) Arkivoc 43
- Törincsi M, Kolonits P, Fekete J, Novak L (2012) Synth Commun 42:3187
- Kupai K, Banoczi G, Hornyanszky G, Kolonits P, Novak L (2012) Monatsh Chem 143:1663
- 18. Baldwin JE (1976) J Chem Soc Chem Commun 734
- Baldwin JE, Thomas RC, Kruse L, Silberman L (1977) J Org Chem 42:3846
- 20. Baldwin JE, Lusch MJ (1982) Tetrahedron 38:2939
- 21. Haufe G (1979) Monatsh Chem 110:121
- 22. Allinger NL, Tushaus LA (1967) Tetrahedron 23:2051
- 23. Cox RA, Swallow AJ (1958) J Chem Soc 3727
- 24. Dondas HA, Grigg R, Thibault S (2001) Tetrahedron 57:7035
- Bond CW, Cresswell AJ, Davies SG, Fletcher AM, Kurasawa W, Lee JA, Roberts PM, Russell AJ, Smith AD, Thomson JE (2009) J Org Chem 74:6735