

Research Article

Te(II)-induced heterocyclization of 1,2-alkadienephosphonates

Dobromir Dimitrov ENCHEV*

Department of Organic Chemistry and Technology, Faculty of Natural Sciences, "K. Preslavsky" University, Shumen, Bulgaria

Received: 12.10.2012 • Accepted: 26.10.2013	٠	Published Online: 14.04.2014	٠	Printed: 12.05.2014
--	---	------------------------------	---	----------------------------

Abstract: The reactivity of some 1,2-alkadienephosphonates towards phenyltelluryl halides was investigated. A plausible mechanism of the reaction is discussed.

Key words: 1,2-Alkadienephosphonates, electrophilic addition, phosphorus heterocycles

1. Introduction

The applications of organophosphorus compounds as pharmaceutical, agricultural, and chemical agents are well documented.^{1,2} Among them, oxaphosphole derivatives, which have structures similar to those of phosphosugars, have received particular interest.^{3,4} Consequently, many attempts for their synthesis have been made. One of the easiest and most fruitful methods for the synthesis of these derivatives is electrophile-induced heterocyclization of 1,2-alkadienephosphonates.⁵

Keeping in mind that the scope of applications of organotellurides has been known for years because of their ready transformation to other compounds via reactions with organometallic reagents, $^{6-10}$ here we wish to report the results of our study on the electrophilic addition of organotellurides to some 1,2alkadienephosphonates.

2. Experimental

2.1. Analytical methods

The ¹H NMR and ³¹P NMR spectra were measured at normal probe temperature on a Bruker Avance DRX 250 MHz spectrometer using tetramethylsilane (TMS) (¹H) and 85% H_3PO_4 (³¹P) as internal references in CDCl3 solution.

Chemical shifts are given in parts per million (ppm) and are downfield from the internal standard. The infrared (IR) spectra were run on a Shimadzu IRAffinity-1 spectrophotometer. Elemental analyses were carried out by the University of Shumen Microanalytical Service Laboratory. Phenyltelluryl chloride was synthesized as described previously.¹¹⁻¹⁵

Compounds 1, 3, 4, 7, and 9 were synthesized according to the literature.¹⁶⁻¹⁸

The solvents were purified by standard methods. All reactions were carried out in oven-dried glassware under an argon atmosphere and with exclusion of moisture. All compounds were checked for their purity on TLC plates. Melting points are uncorrected.

^{*}Correspondence: enchev@shu-bg.net

ENCHEV/Turk J Chem

2.2. Synthesis of 2-alkoxy-5-alkyl-5-alkyl-4-phenyltellanyl-5*H*-[1,2]-oxaphosphole 2-oxides and of 2-alkoxy-4-phenyltellanyl-1-oxa-2-phospha-[4,5]-dec-3-ene 2-oxide 2a–d

2.2.1. General procedure

To a solution of **1** (5 mmol) in methylene chloride (10 mL) was added a solution of phenyltelluryl chloride (1.24 g, 5.2 mmol) in 5 mL of methylene chloride under stirring and cooling (-10 to -12 °C). After 1 h of stirring at the same conditions, the reaction mixture stood overnight, and was concentrated and recrystallized in heptane/benzene (2:1).

2a, cryst. colorless needles; 1.59 g (87%), mp °C (147–149), IR (KBr) ν_{max}/cm^{-1} 2980, 2677, 1540, 1235, 960 cm⁻¹; ¹H NMR (250 MHz, CDCl₃) ppm: 7.86–7.87 (m, 2H), 7.30–7.51 (m, 3H), 6.46 (d, J_{HP} 26.0 Hz, 1H), 3.70 (d, J_{HP} 12.2 Hz, 3H), 1.59 (s, 3H), 1.55 (s, 3H). ³¹ P NMR (250 MHz, CDCl₃) ppm: 33.09; Anal., Calcd. for $C_{12}H_{15}O_3PTe$ (M_r = 365.81): P 8.47; Found P 8.43; **2b**, cryst. colorless needles; 1.38 g (73%), mp °C (150–152), IR (KBr) ν_{max} /cm⁻¹ 2980, 2677, 1580, 1235, 1000 cm⁻¹; ¹H NMR (250 MHz, CDCl₃) ppm: 7.86–7.87 (m, 2H), 7.30–7.51 (m, 3H), 6.49 (d, J_{HP} 26.1 Hz, 1H), 4.17 (m, J_{HP} 10.0 Hz, 2H), 1.36 (t, J_{HH} 7.0 Hz, 3H) 1.52 (s, 3H), 1.57 (s, 3H). ³¹P NMR (250 MHz, CDCl₃) ppm: 32.0; Anal., Calcd. for C₁₃H₁₇O₃PTe $(M_r = 379.836)$: P 8.15; Found P 8.11; **2c**, cryst. colorless needles; 1.46 g (77%), mp °C (149–150); IR (KBr) ν_{max} /cm⁻¹ 2980, 2677, 1545, 1235, 980 cm⁻¹; ¹H NMR (250 MHz, CDCl₃) ppm: 7.86–7.87 (m, 2H), 7.30–7.51 (m, 3H), 6.55, 6.59* (d, J_{HP} 26.0 Hz, 1H), 3.80, 3.82* (d, J_{HP} 11.6 Hz, 2H), 1.51, 154* (s, 3H), 1.89 (m, 2H), 0.92 (t, 3H). ³¹ P NMR (250 MHz, CDCl₃) ppm: 33.12; Anal., Calcd. for $C_{13}H_{17}O_3PTe$ (M_r = 379.836): P 8.15; Found P 8.10; (*Additional signals for diastereomers); 2d, cryst. colorless needles; 1.44 g (71%), mp °C (155–157); IR (KBr) ν_{max} /cm⁻¹ 2980, 2677, 1540, 1235, 990 cm⁻¹; ¹H NMR (250 MHz, CDCl₃) ppm: 7.86–7.87 (m, 2H), 7.30–7.51 (m, 3H), 6.42 (d, J_{HP} 25.8 Hz, 1H), 3.80 (d, J_{HP} 11.2 Hz, 2H), 1.68 (m, 10H). ³¹ P NMR (250 MHz, CDCl₃) ppm: 33.23; Anal., Calcd. for $C_{15}H_{19}O_3PTe$ ($M_r = 405.872$): P 7.63; Found P 7.60.

2.3. Synthesis of (5-alkyl-5-alkyl-2-oxo-4-phenyltellanyl-2,5-dihydro- $2\lambda^5$ -[1,2]-oxaphosphol-2-yl) dialkylamines 5a-c and of dialkyl-(2-oxo-4-phenyltellanyl-1-oxa- $2\lambda^5$ phospha-spiro[4,5]-dec-3-ene 2-yl)amines 6a–c

2.3.1. General procedure

To a solution of **3** or **4** (5 mmol) in methylene chloride (10 mL) was added a solution of phenyltelluryl chloride (1.24 g, 5.2 mmol) in 5 mL of methylene chloride under stirring and cooling (-10 to -12 °C). After 1 h of stirring at the same conditions, the reaction mixture stood overnight, and was concentrated and recrystallized in heptane/benzene (2:1).

5a, cryst. colorless needles; 1.67 g (82%), mp °C (147–149); IR (KBr) ν_{max} /cm⁻¹ 2980, 2677, 1589, 1225, 1004 cm⁻¹; ¹H NMR (250 MHz, CDCl₃) ppm: 7.86–7.87 (m, 2H), 7.30–7.51 (m, 3H), 5.88 (d, J_{HP} 24.2 Hz, 1H), 1.40 (s, 3H), 1.58 (s, 3H), 1.00 (t, J_{HH} 7.0 Hz, 3H), 2.93 (m, J_{HP} 13.6 Hz, 2H). ³¹P NMR (250 MHz, CDCl₃) ppm: 28.3; Anal., Calcd. for C₁₅H₂₂O₂NPTe (M_r = 406.896): P 7.61, N 3.44; Found P 7.59, N 3.41; **5b**, cryst. colorless needles; 1.62 g (77%), mp °C (149–150); IR (KBr) ν_{max} /cm⁻¹ 2980, 2677, 1590, 1235, 980 cm⁻¹; ¹H NMR (250 MHz, CDCl₃) ppm: 7.86–7.87 (m, 2H), 7.30–7.51 (m, 3H), 6.55, 6.59* (d, J_{HP} 22.4 Hz, 1H), 1.51, 154* (s, 3H), 1.89 (m, 2H), 0.92 (t, 3H), 1.04 (t, J_{HH} 7.0 Hz, 3H), 3.00 (m, J_{HP} 12.1 Hz, 2H).

ENCHEV/Turk J Chem

³¹ P NMR (250 MHz, CDCl₃) ppm: 27.9; *Anal.*, Calcd. for C₁₆H₂₄O₂NPTe (M_r = 420.922): P 7.36, N 3.32; Found P 7.33, N 3.29 (*Additional signals for diastereomers); **5c**, cryst. colorless needles; 1.81 g (81%), mp °C (155–157); IR (KBr) ν_{max} /cm⁻¹ 2980, 2677, 1588, 1225, 1000 cm⁻¹; ¹H NMR (250 MHz, CDCl₃) ppm: 7.86–7.87 (m, 2H), 7.30–7.51 (m, 3H), 5.87 (d, J_{HP} 23.5 Hz, 1H), 1.68 (m, 10H), 0.98 (t, J_{HH} 7.0 Hz, 3H), 2.92 (m, J_{HP} 12.4 Hz, 2H). ³¹ P NMR (250 MHz, CDCl₃) ppm: 32.3; *Anal.*, Calcd. for C₁₈H₂₆O₂NPTe (M_r = 446.958): P 6.93, N 3.13; Found P 6.90, N 3.10.

6a, cryst. colorless needles; 1.89 g (87%), mp °C (147–149); IR (KBr) ν_{max}/cm^{-1} 2980, 2677, 1580, 1230, 1000 cm⁻¹; ¹H NMR (250 MHz, CDCl₃) ppm: 7.86–7.87 (m, 2H), 7.30–7.51 (m, 3H), 6.08 (d, J_{HP} 24.2 Hz, 1H), 1.40 (s, 3H), 1.58 (s, 3H), 1.24 (ss, 6H), 2.93 (m, 1H). ³¹P NMR (250 MHz, CDCl₃) ppm: 28.3; Anal., Calcd. for C₁₇H₂₆O₂NPTe (M_r = 434.948): P 7.12, N 3.22; Found P 7.10, N 3.19; **6b**, cryst. colorless needles; 1.66 g (74%), mp °C (147–149); IR (KBr) ν_{max}/cm^{-1} 2980, 2677, 1597, 1235, 900 cm⁻¹; ¹H NMR (250 MHz, CDCl₃) ppm: 7.86–7.87 (m, 2H), 7.30–7.51 (m, 3H), 6.55, 6.59* (d, J_{HP} 26.0 Hz, 1H), 1.51, 154* (s, 3H), 1.89 (m, 2H), 0.92 (t, 3H), 1.24 (ss, 6H), 2.93 (m, 1H). ³¹P NMR (250 MHz, CDCl₃) ppm: 28.3; Anal., Calcd. for C₁₈H₂₈O₂NPTe (M_r = 450.974): P 6.89, N 3.12; Found P 6.86, N 3.10; **6c**, cryst. colorless needles; 1.99 g (84%), mp °C (147–149); IR (KBr) ν_{max}/cm^{-1} 2980, 2677, 1590, 1228, 1004 cm⁻¹; ⁻¹H NMR (250 MHz, CDCl₃) ppm: 7.86–7.87 (m, 2H), 7.30–7.51 (m, 3H), 5.87 (d, J_{HP} 23.5 Hz, 1H), 1.68 (m, 10H), 1.24 (s, 6H), 2.93 (m, 1H); ³¹P NMR (250 MHz, CDCl₃) ppm: 7.86–7.87 (m, 2H), 7.30–7.51 (m, 3H), 5.87 (d, J_{HP} 23.5 Hz, 1H), 1.68 (m, 10H), 1.24 (s, 6H), 2.93 (m, 1H); ³¹P NMR (250 MHz, CDCl₃) ppm: 7.86–7.87 (m, 2H), 7.30–7.51 (m, 3H), 5.87 (d, J_{HP} 23.5 Hz, 1H), 1.68 (m, 10H), 1.24 (s, 6H), 2.93 (m, 1H); ³¹P NMR (250 MHz, CDCl₃) ppm: 28.3; Anal., Calcd. for C₂₀ H₃₀ O₂ NPTe (M_r = 475.01): P 6.52, N 2.95; Found P 6.50, N 2.91.

2.4. Synthesis of (5-alkyl-5-alkyl-2-oxo-4-phenyltellanyl-2,5-dihydro- $2\lambda^5$ -[1,2]-oxaphosphol-2-yl) alkylamines 8a,b and of alkyl-(2-oxo-4-phenyltellanyl-1-oxa- $2\lambda^5$ phospha-spiro[4,5]-dec-3-ene 2-yl)amine 8c

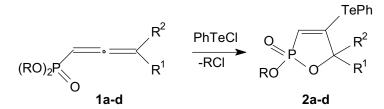
2.4.1. General procedure

To a solution of 7 (5 mmol) in methylene chloride (10 mL) was added a solution of phenyltelluryl chloride (1.24 g, 5.2 mmol) in 5 mL of the same solvent under stirring and cooling (-10 to -12 °C). After 1 h of stirring at the same conditions, the reaction mixture stood overnight, and was concentrated and recrystallized in heptane/benzene (2:1).

8a, cryst. colorless needles; 1.61 g (82%), mp °C (147–149); IR (KBr) ν_{max}/cm^{-1} 2980, 2677, 1580, 1245, 1004 cm⁻¹; ¹H NMR (250 MHz, CDCl₃) ppm: 7.56–7.46 (m, 2H); 7.29–7.23 (m, 3H); 5.35 (d, J_{HP} 27.75 Hz, 1H); 2.54 (m, 2H); 1.46 (s, 3H); 1.51 (s, 3H); 2.00 (d, J_{HP} 10.00 Hz, 1H); 1.28–1.19 (m, 2H); 0.91 (t, 3H); ³¹P NMR (250 MHz, CDCl₃) ppm: 29.0; *Anal.*, Calcd. for C₁₄H₂₀O₂NPTe (M_r = 392.87): P 7.88, N 3.56; Found P 7.83, N 3.51; **8b**, cryst. colorless needles; 1.52 g (75%), mp °C (147–149); IR (KBr) ν_{max}/cm^{-1} 2980, 2677, 1589, 1230, 960 cm⁻¹; ¹H NMR (250 MHz, CDCl₃) ppm: 7.86–7.87 (m, 2H), 7.30–7.51 (m, 3H), 6.55, 6.59* (d, J_{HP} 26.0 Hz, 1H), 1.51, 154* (s, 3H), 1.89 (m, 2H), 0.92 (t, 3H), 2.54 (m, 2H), 2.00 (d, J_{HP} 10.00 Hz, 1H); 1.28–1.19 (m, 2H); 0.91 (t, 3H). ³¹P NMR (250 MHz, CDCl₃) ppm: 28.3; *Anal.*, Calcd. for C₁₅H₂₂O₂NPTe (M_r = 406.896): P 7.61, N 3.44; Found P 7.58, N 3.40 (*Additional signals for diastereomers); **8c**, cryst. colorless needles; 1.71 g (79%), mp °C (147–149); IR (KBr) ν_{max}/cm^{-1} 2980, 2677, 1587, 1253, 1004 cm⁻¹; ¹H NMR (250 MHz, CDCl₃) ppm: 7.86–7.87 (m, 3H), 5.87 (d, J_{HP} 23.5 Hz, 1H), 1.68 (m, 10H), 2.54 (m, 2H), 2.00 (d, J_{HP} 10.00 Hz, 1H); 1.28–1.19 (m, 2H), 2.00 (d, J_{HP} 23.5 Hz, 1H), 1.68 (m, 10H), 2.54 (m, 2H), 2.00 (d, J_{HP} 10.00 Hz, 1H); 1.28–1.19 (m, 2H), 2.00 (d, J_{HP} 23.5 Hz, 1H), 1.68 (m, 10H), 2.54 (m, 2H), 2.00 (d, J_{HP} 10.00 Hz, 1H); 1.28–1.19 (m, 2H), 2.00 (d, J_{HP} 23.5 Hz, 1H), 1.68 (m, 10H), 2.54 (m, 2H), 2.00 (d, J_{HP} 10.00 Hz, 1H); 1.28–1.19 (m, 2H), 2.00 (d, J_{HP} 10.00 Hz, 1H); 1.28–1.19 (m, 2H); 0.91 (t, 3H); ³¹P NMR (250

MHz, CDCl₃) ppm: 28.3; Anal., Calcd. for C $_{17}$ H $_{24}$ O $_2$ NPTe (M $_r$ = 432.932): P 7.15, N 3.23; Found P 7.11, N 3.20.

2.5. Synthesis of 4-(5-alkyl-5-alkyl-2-oxo-4-phenyltellanyl-2,5-dihydro- $2\lambda^5$ -[1,2]-oxaphosphol-2-yl) morpholines 10a,b and of 4-(2-oxo-4-phenyltellanyl-1-oxa- $2\lambda^5$ phospha-spiro[4,5]-dec-3-ene 2-yl)morpholine 10c


2.5.1. General procedure

To a solution of **9** (5 mmol) in methylene chloride (10 mL) was added a solution of phenyltelluryl chloride (1.24 g, 5.2 mmol) in 5 mL of methylene chloride under stirring and cooling (-10 to -12 °C). After 1 h of stirring at the same conditions, the reaction mixture stood overnight, and was concentrated and recrystallized in heptane/benzene (2:1).

10a, cryst. colorless needles; 1.30 g (62%), mp °C (147–149); IR (KBr) ν_{max}/cm^{-1} 2980, 2677, 1589, 1225, 1004 cm⁻¹; ¹H NMR (250 MHz, CDCl₃) ppm: 7.56–7.46 (m, 2H); 7.29–7.23 (m, 3H); 6.34 (d, J_{HP} 23.0 Hz, 1H); 1.46 (s, 3H); 1.51 (s, 3H), 2.87, 3.76 (m, 8H); ³¹P NMR (250 MHz, CDCl₃) ppm: 33.42; Anal., Calcd. for C₁₅H₂₀O₃NPTe (M_r = 420.88): P 7.36, N 3.33; Found P 7.32, N 3.30; **10b**, cryst. colorless needles; 1.45 g (67%), mp °C (147–149); IR (KBr) ν_{max}/cm^{-1} 2980, 2677, 1595, 1225, 1000 cm⁻¹; ¹H NMR (250 MHz, CDCl₃) ppm: 7.86–7.87 (m, 2H), 7.30–7.51 (m, 3H), 6.55, 6.59* (d, J_{HP} 26.0 Hz, 1H), 1.51, 154* (s, 3H), 1.89 (m, 2H), 0.92 (t, 3H), 2.87, 3.76 (m, 8H). ³¹P NMR (250 MHz, CDCl₃) ppm: 34.12; Anal., Calcd. for C₁₆H₂₂O₃NPTe (M_r = 434.906): P 7.12, N 3.22; Found P 7.09, N 3.18 (*Additional signals for diastereomers); **10c**, cryst. colorless needles; 1.40 g (61%), mp °C (147–149); IR (KBr) ν_{max}/cm^{-1} 2980, 2677, 1589, 1273, 998 cm⁻¹; ¹H NMR (250 MHz, CDCl₃) ppm: 7.86–7.87 (m, 2H), 7.30–7.51 (m, 3H), 5.87 (d, J_{HP} 23.5 Hz, 1H), 1.68 (m, 10H), 2.87, 3.76 (m, 8H). ³¹P NMR (250 MHz, CDCl₃) ppm: 33.22; Anal., Calcd. for C₁₈H₂₄O₃NPTe (M_r = 460.942): P 6.72, N 3.04; Found P 6.69, N 2.99.

3. Results and discussion

In our first report on this subject¹⁹ we demonstrated that the reaction of dialkyl esters of 1,2-alkadienephosphonic acids with phenyltelluryl chloride leads to the formation of 4-phenyltelluro-2,5-dihydro-1,2-oxaphosphole 2-oxide derivatives (Figure 1).

 $2a, R, R^1, R^2 = Me, 2b, R = Et, R^1 = R^2 = Me, 2c, R = R^1 = Me, R^2 = Et, 2d, R = Me, R^1 + R^2 = cyclohexyl$

Figure 1. Reaction of dialkyl esters of 1,2-alkadienephosphonic acids with phenyltelluryl chloride.

In 2007, Yuan and co-workers reported the same results using different synthetic conditions.²⁰

Continuing our investigations on this reaction, we studied the reaction of N,N-dialkylamido-O-alkyl-1,2alkadienephosphonates previously described by us,¹⁷ with the same reagent, and established that in all cases with good yields the oxaphosphole derivatives 5a-c and 6a-c were obtained (Figure 2):

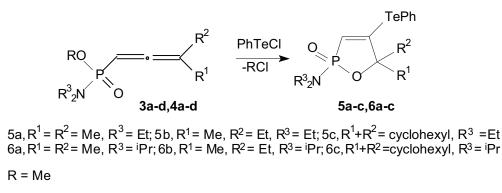
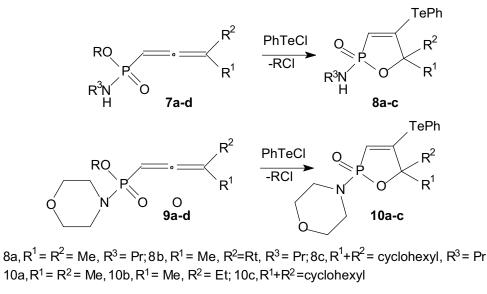



Figure 2. Reaction of N,N-dialkylamido-O-alkyl-1,2-alkadienephosphonates with phenyltelluryl chloride.

The results reported above encourage us to investigate the reactivity of N-alkylamido-O-alkyl-1,2-alkadienephosphonates as well as the reactivity of N-morpholino-O-alkyl-1,2-alkadienephosphonates also previously reported by us.¹⁸ We expected both substrates to react with phenyltelluryl chloride with formation of the corresponding 2,5-dihydro-1,2-oxaphosphole 2-oxide derivatives (Figure 3).

R = Me

Figure 3. Reaction of N-alkylamido-O-alkyl-1,2-alkadienephosphonates and of N-morpholino-O-alkyl-1,2-alkadienephosphonates with phenyltelluryl chloride.

All the synthetic results obtained as well as our previous experience⁵ give us reason to suggest the following plausible mechanism of the telluro-induced cyclization of 1,2-alkadienephosphonates (Figure 4):

The attack of the reagent affecting the C^2-C^3 double bond of the allenephosphonate system leads to the formation of "onium" intermediate **A**, which is in equilibrium with carbocation **B**. The latter can be transformed to quaziphosphonium intermediate **C**, which undergoes dealkylation (Michalis–Arbuzov reaction – second stage) to afford the final 2,5-dihydro-1,2-oxaphosphole 2-oxide derivatives **2**, **5**, **6**, **8**, and **10**.

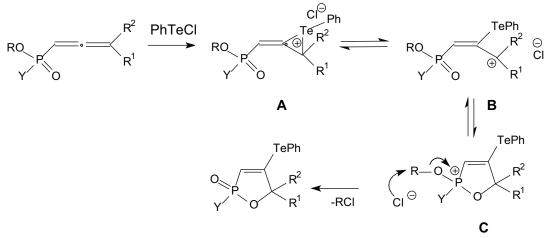


Figure 4. Plausible mechanism of the telluro-induced cyclization of 1,2-alkadienephosphonates.

References

- Cupta, H. C. L. In *Insecticides: Toxicology and Uses*; Agrotech Publishing Academy Press: Udaipur, India, 1999, p. 51211.
- 2. Matsumara, F. In Toxicology of Insecticides, 2nd ed.; Plenum Press: New York, NY, USA, 1985; pp 62–90.
- Racha, S.; Vageese, C.; Vemishetti, P.; El-Subbagh, H. I.; Abushanab, E.; Panzica, R. P. J. Med. Chem. 1996, 39, 1130–1135.
- Reist, E. J.; Sturm, P. A.; Pong, R. Y.; Tanga, M. J.; Sidwell, R. W. In Synthesis of Acylonucleoside Phosphonates for Evaluation as Antiviral Agents in Nucleotide Analogues as Antiviral Agents; Martin, J. C., Ed., American Chemical Society: Washington D.C., USA, 1989; pp. 17–34
- For review see: Enchev, D. D. Topics in Heterocyclic Chemistry, Springer: Berlin/Heidelberg, Germany, 2010, 21, 23–63.
- 6. Comasseto, J. V.; Ling, W. L.; Petragnani, N.; Stefani, H. A. Synthesis 1997, 373-404.
- 7. Dabdoub, M. J.; Justino, A.; Guerro, P. G. Jr. Organometallics 1998, 17, 1901–1903.
- 8. Dabdoub, M. J.; Baroni, C. M. J. Org. Chem. 2000, 65, 54–60.
- 9. Dabdoub, M. J.; Begnini, M. L.; Guerro, P. G. Jr.; Baroni, C. M. J. Org. Chem. 2000, 65, 61–67.
- 10. Petragnani, N.; Stefani, H. A. Tetrahedron 2005, 61, 1613-1679.
- 11. Schultz, P.; Klar, G. Z. Naturforsch. 1975, 30B, 40-43.
- 12. Klapotke, T. M.; Krumm, B.; Schwab, I. Z Kryst. NCS 2005, 220, 594–596.
- 13. Alcock, N. W.; Harrison, W. D. J. Chem. Soc. Dalton Trans. 1984, 869-875.
- 14. Maksimenko, A. A.; Zaharov, A. V.; Sadekov, I. D. Russ. Chem. Rev. 2000, 69, 861–882.
- Klapotke, T. M.; Krumm, B.; Mager, P.; Piotrowski, H.; Schwab, I.; Vogt, M. Eur. J. Inorg. Chem. 2002, 2701– 2709.
- Mark, V. In Selective Organic Transformations, Thyaraian, B. S., Ed., John Wiley & Sons, New York NY, USA, 1970, p. 319.
- 17. Angelov, Ch. M.; Enchev, D. D. Phosphorus Sulfur Silicon and the Related Elem. 1987, 34, 163-168.
- 18. Enchev, D. D. Phosphorus Sulfur Silicon and the Related Elem. 2005, 180, 2131–2135.
- Stankolov, S. P.; Enchev, D. D. Proc. of the 5th International Conference of the Chemical Societies of the South-East European Countries, September 10–14, 2006, Ohrid, FIROM, OCH-54, 478.
- 20. Yuan, J.; Ruan, X.; Yang, Y.; Huang, X. Synlett 2007, 2871–2875.

Copyright of Turkish Journal of Chemistry is the property of Scientific and Technical Research Council of Turkey and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.