
A NEW FACILE SYNTHESIS OF 5-ARYL-4-TRIFLUOROACETYL-6-TRIFLUOROMETHYL-3,4-DIHYDRO-2H-1,3,4-OXADIAZINES FROM ARYLALDEHYDES

Yasuhiro Kamitori, Masaru Hojo,^{*} Ryoichi Masuda, Yoshihiko Kawamura, Kazuyoshi Kawasaki, and Junya Ida Department of Industrial Chemistry, Faculty of Engineering, Kobe University, Kobe 657, Japan

<u>Summary</u>: By reaction with an excess of trifluoroacetic anhydride, title compounds <u>4</u> were synthesized from C-trifluoroacetylated hydrazones <u>1</u> which are readily obtainable by trifluoroacetylation of arylaldehyde dimethylhydrazones.

Oxadiazine derivatives have attracted much attention of organic chemists from interests in their biological activities.^{1,2,3} Recently we reported synthesis of 5-aryl-6-trifluoromethyl-3,6-dihydro-2H-1,3,4-oxadiazines (2) from C-trifluoroacetylated arylaldehyde dialkylhydrazones 1 using silica gel as an effective catalyst.^{4,5} Later, we found that 1 treated with a large excess of trifluoroacetic anhydride (TFAA) in the <u>presence</u> of pyridine afforded 4-trifluoromethylpyrazoles (3) in good yields.⁶ Interestingly, when this reaction is performed in the <u>absence</u> of pyridine, quite different reaction takes place to give 5-aryl-4-trifluoroacetyl-6-trifluoromethyl-3,4-dihydro-2H-1,3,4-oxadiazines (4), skeletal isomers of 2, in fair yields. This is a convenient threesteps synthesis of 4 from parent arylaldehydes. We now wish to communicate the results.

Hydrazones <u>la-e</u> were prepared by trifluoroacetylation of arylaldehyde dimethylhydrazones according to the manner reported previously.⁴ For the reaction of <u>1</u> and TFAA, typical procedure is shown as follows. To an ice-cold solution of <u>1b</u> (258 mg, 1 mmol) in anhyd. CHCl₃ (0.5 ml) was added dropwise TFAA (1.2 ml, 8.5 mmol) with continuous stirring. After stirring for 2 days at ambient temperature, the reaction mixture was diluted with CH_2Cl_2 (30 ml) and washed thoroughly with 1N Na₂CO₃ solution (50 ml). The organic layer was dried over anhyd. MgSO₄ and the solvent was removed. The residual brown oil was purified by Kugelrohr distillation to afford 252 mg (71%) of <u>4b</u>⁷ as pale yellow oil. Quite similarly <u>4a</u> and <u>4c-e</u> could be obtained in moderate to good yields (see Table).

Compound $\underline{4}$ could not be obtained directly from arylaldehyde dimethylhydrazones by

	Ar	time day	yield ^a %	oven temp. ^b °C/ torr	¹ Η NMR δ, ppm
<u>4a</u>	с _б н ₅	2	46	135/3	7.25 (s, 5H, Ar), 4.91 (s, 2H, CH ₂),
	•••			(mp. 79.5°C)	2.90 (s, 3H, NCH ₃)
<u>4b</u>	p-CH3C6H4	2	71	140/1	7.03 (s, 4H, Ar), 4.87 (s, 2H, CH ₂),
	001				2.87 (s, 3H, NCH ₃), 2.31 (s, 3H, CH ₃)
<u>4c</u>	p-CH30C6H4	8 ^C	76	oi 1 ^d	7.10, 6.76 (d, 2H, Ar), 4.89 (s, 2H, CH ₂),
	•••				3.75 (s, 3H, OCH ₃), 2.90 (s, 3H, NCH ₃)
<u>4d</u>	p-C1C ₆ H ₄	4	39	105/1	6.97-7.33 (q, 4H, Ar), 4.92 (s, 2H, CH ₂),
	• •				2.91 (s, 3H, NCH ₃)
<u>4e</u>	p-02NC6H4	20 ^C	43	oi 1 ^d	8.10, 7.28 (d, 2H, Ar), 4.96 (s, 2H, CH ₂),
					2.94 (s, 3H, NCH ₃)

Table Yields and ¹H NMR Spectral Data for $\underline{4a} - \underline{e}$.

^a Isolated yield. ^b Kugelrohr distillation. ^c Reaction was carried out at 8°C. ^d These compounds were purified by silica gel column chromatography (ether/n-pentane= 3/7).

treatment with an excess of TFAA. Trifluoroacetylation of $\underline{2}$ (Ar= p-Tol) successfully proceeded to afford $\underline{4b}$ in 75% yield when $\underline{2}$ (Ar= p-Tol) was treated with 8.5 mole equiv. of TFAA in the presence of 3 mole equiv. of 2,6-lutidine. However, in the absence of 2,6lutidine, *i.e.*, the conditions from $\underline{1}$ to $\underline{4}$ shown in the Table, $\underline{2}$ afforded $\underline{4}$ in very low yields together with much unidentified materials. This suggests that the reaction from $\underline{1}$ to $\underline{4}$ does not proceed via $\underline{2}$ as an intermediate.

Detailed mechanistic studies and pharmacological activity tests for these newly synthesized oxadiazines, 4a-e are now in progress.

<u>References and Notes</u>

- R. B. Hargreaves, B. J. McLoughlin, and S. D. Mills, *European Patent* 85227 (1983);
 C.A., <u>100</u>, 6561 (1984). I. Sircar, M. H. Cain, and J. G. Topliss, *U.S. Patent* 4508718 (1984);
 C.A., <u>103</u>, 6373 (1985).
- Japanese Patent 58,131,973 (1983), Imperial Chemical Industries PLC.; C.A. <u>100</u>, 6567 (1983). Japanese Patent 59,062,578 (1984), Mitsui Toatsu Chemicals Inc.; C.A., <u>101</u>, 72767 (1984).
- 3) K. Suhasin, T. V. P. Rao, and V. Thirupathaiah, *Curr. Sci.*, <u>52</u>, 1133 (1983); *C.A.*, <u>100</u>, 156574 (1984).
- Y. Kamitori, M. Hojo, R. Masuda, T. Fujitani, S. Ohara, and T. Yokoyama, J. Org. Chem., 53, 129 (1988).
 Y. Kamitori, M. Hojo, R. Masuda, T. Fujitani, S. Ohara, and T. Yokoyama, Synthesis, 208
- 5) Y. Kamitori, M. Hojo, R. Masuda, I. Fujitani, S. Uhara, and T. Yokoyama, *Synthesis*, 208 (1988).
- Y. Kamitori, M. Hojo, R. Masuda, S. Ohara, K. Kawasaki, and N. Yoshikawa, Tetrahedron Lett., <u>29</u>, 5281 (1988).
- 7) <u>4b:</u> IR (KBr) 1734(s), 1340(s), 1193(s), 1100(s) cm⁻¹; ¹³C NMR (CDCl₃) & 156.0(CO, ²J_{CF}= 36Hz), 132.0(C-6, ²J_{CF}= 37Hz), 119.9(CF₃, ¹J_{CF}= 274Hz), 118.8(C-5), 115.8(CF₃CO, ¹J_{CF}= 287Hz), 84.6(C-2, ¹J_{CH}= 167Hz), 39.4(NCH₃), 139.3, 129.0, 127.6(Ar), 21.4 (CH₃). Anal. Calcd for C₁₄H₁₂F₆N₂O₂: C, 47.47; H, 3.41; N, 7.91; F, 32.18. Found C, 47.69; H, 3.59; N,7.93; F, 32.08.