Reactions of ruthenium acetylide complexes with benzylidenemalonitrile[†]

Chao-Wan Chang, Ying-Chih Lin,* Gene-Hsiang Lee and Yu Wang

Department of Chemistry, National Taiwan University, Taipei, Taiwan 106, Republic of China. E-mail: yclin@mail.ch.ntu.edu.tw

Received 19th July 1999, Accepted 18th October 1999

Published on 01 January 1999. Downloaded on 22/10/2014 17:01:53.

Reactions of [RuCp(L)(L')(C=CPh)] (Cp = η^5 -C₅H₅; L = PPh₃, L' = P(OMe)₃ 1a; LL' = dppe = Ph₂PCH₂-CH₂PPh₂ 1b; L = PPh₃, L' = CN'Bu 1c) with H(Ph)C=C(CN)₂ gave the cyclobutenyl complexes $[RuCp(L)-(L'){C=C(Ph)CH(Ph)C(CN)₂}]$ 2a, 2b and 2c which readily transform to the butadienyl complexes $[RuCp(L)(L'){C=C(CN)_2}(CPh)CH(Ph)]$ 3a, 3b and 3c, respectively. Thermolysis of 3a in benzene afforded the allylic complex $[RuCp{P(OMe)_3}[\eta^3-C]=C(CN)_2]C(Ph)CH(Ph)]$ 4 in high yield. Reaction of 4 with 'BuNC gave $[RuCp{P(OMe)_3}(CN'Bu)[\eta^1-C]=C(CN)_2]C(Ph)CH(Ph)]$ 5. Treatment of 1a with Cl(Ph)C=C(CN)₂ afforded the neutral vinylidene phosphonate complex $[RuCp{PPh_3}{P(O)(OMe)_2}=C=C(Ph)C(Ph)C(Ph)_2]$ 6. Reactions of 1b and 1c, both lacking phosphite ligands, with Cl(Ph)C=C(CN)₂ gave the cationic vinylidene complexes

 $[RuCp(L)(L'){=C=C(Ph)C(Ph)C(CN)_{2}}]^{+} 7b and 7c, respectively. Treatment of 1a with ICH_2CN afforded$ $[RuCp(PPh_3){P(OMe)_{3}}{=C=C(Ph)CH_2CN}]I 8a. In the presence of acid complex 8a decomposes to give the acyl$ $complex [RuCp(PPh_3){P(OMe)_{3}}(COCH_2Ph)] 10. The structures of 3a, 4, 6 and the latter complex have been$ determined by single-crystal X-ray diffraction analysis.

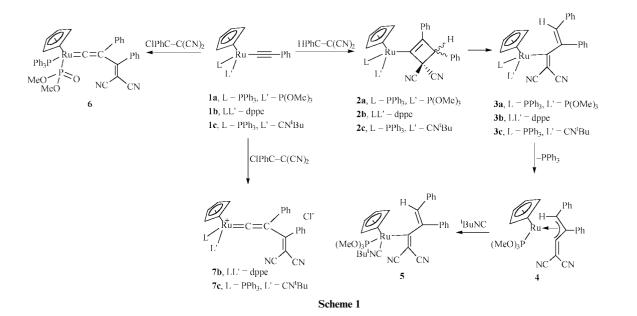
Introduction

Chemical reactivities of metal acetylide complexes have been the focus of several recent works due to their wide applications in many areas of organometallic¹ and material chemistry.² The co-ordinated acetylide ligand on a transition metal is reactive toward electrophiles, undergoing either alkylation or protonation at the β -carbon to give a stable vinylidene complex. The cycloaddition of alkynes with isocyanates has been reported in nickel(0) complexes.3 This reaction possibly proceeds through a metallacycle formed by the σ -co-ordinated acetylide and isocyanate. One common reaction observed for the acetylide ligand is the [2 + 2] cycloaddition of the triple bond with unsaturated organic substrates.⁴ A few cycloadditions of organic substrates such as CS_2 ,⁵ (NC)₂C=C(CF₃)₂, (NC)₂C= C(CN)26 and Ph2C=C=O7 to the acetylide ligand in various metal complexes have also been reported. Addition of activated alkenes containing an electron-withdrawing group to ruthenium acetylide complexes again resulted in a formal [2 + 2] cycloaddition. This was followed by a facile ring opening of the resultant ruthenium cyclobutenyl complex generating the ruthenium butadienyl species. In some cases, subsequent displacement of a phosphine ligand led to the η^3 -allylic product. For example, reactions between [RuCp(L)(L')(C=CR)](R = Me or Ph; L = PPh₃; L' = CO, PPh₃ or P(OPh)₃; LL' = dppe) and tetracyanoethylene gave cyclobutenyl [RuCp-(L)(L'){C=CRC(CN)₂C(CN)₂}], butadienyl [RuCp(L)(L')- $\{C = C(CN)_2 CRC = C(CN)_2\}\]$ and allylic $[RuCp(PPh_3)\{\eta^3 - \eta^3 - \eta$ $C(CN)_2CRC=C(CN)_2$ complexes.⁶

The stereochemical studies by Criegee and co-workers⁸ on the thermal ring opening of *cis*- and *trans*-1,2,3,4– tetramethylcyclobutenes were the first to show unambiguously the contrarotatory nature of the cyclobutene–butadiene electrocyclic interconversion. In 1965 Woodward and Hoffmann⁹ proposed a theory to rationalize such electrocyclic reactions. Since then, Brauman and Golden¹⁰ have estimated that the thermally allowed contrarotatory process for cyclobutenes is more favored (by $15.0 \text{ kcal mol}^{-1}$) than the disrotatory process. This experimental estimate is in accord with values obtained by Breulet and Schaefer¹¹ from *ab initio* calculations.

Bruce and his co-workers studied the transformations of cycloadducts of transition metal acetylides and activated olefins, such as $C(CF_3)_2=C(CN)_2]$,¹² *trans*-CH(CO_2Me)=C(CN)-(CO_2Me)^{13} and 4-(O_2N)C₆H₄CH=C(CN)R (R = CN or CO₂-Et),¹⁴ using a substrate that permitted the stereochemistry to be determined readily.

In a search for new chemical properties of the acetylide complexes, we carried out reactions of isocyanate and isothiocyanate with two such ruthenium complexes and recently reported ¹⁵ sequential additions of the organic substrate to the acetylide producing a novel heterocyclic ligand not observed before. The [2 + 2] cycloaddition is the first step and is followed by further additions of isothiocyanate to give a trimerization product. In this paper we report the reactions of H(Ph)C= $C(CN)_2$ and $Cl(Ph)C=C(CN)_2$ with ruthenium acetylides. These olefins were chosen because the presence of different electrophilic groups might enable further information to be obtained in the course of these reactions.


Results and discussion

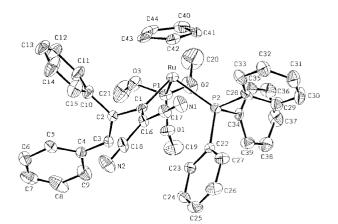
Synthesis of cyclobutenyl and butadienyl complexes

Treatment of $[RuCp(PPh_3){P(OMe)_3}(C=CPh)]$ 1a with $H(Ph)C=C(CN)_2$ in CH_2Cl_2 at room temperature for 1 h resulted in formation of a mixture of two complexes: $[RuCp-(PPh_3){P(OMe)_3}{C=C(Ph)CH(Ph)C(CN)_2}]$ 2a and $[RuCp-(PPh_3){P(OMe)_3}{C=C(CN)_2}C(Ph)CH(Ph)]$ 3a in a ratio of 1:1 (Scheme 1). Prolonging the reaction time did not alter the ratio. However, if we carried out this reaction at 0 °C for 3 h the ratio was about 2:1, which again changed to 1:1 at room temperature. Complexes 2a and 3a cannot be separated by column chromatography. Recrystallization of their mixture gave only

J. Chem. Soc., Dalton Trans., 1999, 4223–4230 4223

[†] Supplementary data available: rotatable 3-D crystal structure diagram in CHIME format. See http://www.rsc.org/suppdata/dt/1999/4223/

single crystals of 3a, which converted into the mixture in solution.


There was no obvious color change in the formation of complexes 2a and 3a from 1a, so the reaction was monitored by ³¹P and ¹H NMR spectra. For 1a the ³¹P NMR spectrum displays two doublet resonances at δ 56.2 and 151.7 with $J_{P-P} = 68.8$ Hz assignable to PPh₃ and P(OMe)₃, respectively. Upon addition of 3 equivalents of H(Ph)C=C(CN)₂ to the CDCl₃ solution of 1a, complexes 2a and 3a formed. The ³¹P NMR spectrum of the mixture displays four doublet resonances of which the two at δ 58.8 and 148.9 with $J_{P-P} = 70.2$ Hz are assigned to the PPh₃ and P(OMe)₃ of 2a, respectively, and those at δ 58.3 and 148.2 with $J_{P-P} = 70.4$ Hz to the corresponding ones of 3a. In the ¹H NMR spectrum two singlet resonances at δ 5.10 and 5.01 and a doublet resonance at δ 3.27 with $J_{\text{H-P}} = 10.9 \text{ Hz}$ are assigned to CH, Cp and OMe of 2a, respectively. The corresponding resonances for ${\bf 3a}$ appear at δ 4.66 and 4.74 and 3.27 (doublet with $J_{H-P} = 10.9$ Hz).

The reactions of complexes 1b and 1c with H(Ph)C=C(CN)₂ yielded kinetic and thermodynamic products. That of 1b in CH₂Cl₂ in 1 h at room temperature afforded 2b which transformed completely to **3b** in 24 h. For **2b** the ³¹P NMR spectrum displays two broad resonances at δ 98.1 and 96.9 assignable to the dppe ligand and the ¹H NMR spectrum shows two singlet resonances at δ 5.24 and 4.67 assignable to CHPh and Cp, respectively. For **3b** the ³¹P NMR spectrum displays two broad resonances at δ 94.0 and 92.3 and the ¹H NMR spectrum displays the broad resonance at δ 5.95 assignable to CHPh and the resonance at δ 4.43 to Cp. Treatment of 1c with H(Ph)C= C(CN)₂ in CH₂Cl₂ at room temperature for 10 min afforded 2c in 87% yield (Scheme 1). If 2c was not isolated immediately the ring-opening reaction proceeded and 3c formed. Attempts to recrystallize 2b and 2c from CH₂Cl₂-hexane (1:2) at -20 °C resulted in isolation of 3b and 3c, respectively. Complexes 2a and 3a containing PPh₃ and P(OMe)₃ as their ancillary ligands are in equilibrium. However, no such phenomenon was observed for complexes 2b/3b and 2c/3c possibly because there is no P(OMe)₃ ligand in them.

The molecular structure of complex **3a** has been determined by a single-crystal X-ray diffraction analysis, an ORTEP¹⁶ drawing being shown in Fig. 1. Selected bond distances and angles are listed in Table 1. The co-ordination about the ruthenium is a distorted piano-stool geometry with the η^{5} -C₅H₅ group being symmetrically attached to the metal. All Ru–C (Cp) bond distances range within 2.231(2)–2.249(2) Å with an average of 2.238 Å. The Ru–C1 bond distance of 2.055(8) Å is relatively shorter. The butadienyl ligand is non-planar and there

Table 1Selected bond distances (Å) and angles (°) of $[RuCp(PPh_3)-{P(OMe)_3}C[=C(CN)_2]C(Ph)=CH(Ph)]$ 3a

Ru–P1	2.2364(23)	Ru–P2	2.3305(23)
Ru–C1	2.055(8)	C1–C16	1.384(11)
C1–C2	1.506(11)	C2–C3	1.319(11)
C2–C10	1.512(11)	C3–C4	1.455(11)
C16–C17	1.428(11)	C16–C18	1.451(11)
C17–N1	1.143(11)	C18–N2	1.131(11)
P1-Ru-P2	92.33(8)	P1-Ru-C1	92.92(22)
P2-Ru-C1	94.57(21)	Ru-C1-C16	126.1(6)
Ru-C1-C2	122.2(5)	C1-C2-C10	111.8(6)
C1-C2-C3	124.2(7)	C3-C2-C10	123.9(7)

Fig. 1 An ORTEP drawing of complex **3a** with thermal ellipsoids, (in all Figures) shown at the 30% probability level.

is no obvious delocalization between C–C single and C=C double bonds (C1–C16 1.384; C1–C2 1.506; C2–C3 1.319 Å).

Synthesis and structure of $[RuCp{P(OMe)_3}{\eta^3-C[=C(CN)_2]-C(Ph)CH(Ph)}] 4$

Thermolysis of complex **3a** in benzene at refluxing temperature for 2 d afforded the allylic complex $[RuCp{P(OMe)_3}{\eta^3}-C[=C(CN)_2]C(Ph)CH(Ph)]$ **4** by removal of a PPh₃ ligand with high yield (Scheme 1). The ¹H NMR spectrum of **4** displays a singlet resonance at δ 4.94 and two doublet resonances at δ 3.63 ($J_{H-P} = 11.8$) and 3.43 ($J_{H-P} = 12.3$ Hz) attributed to Cp, OMe and CH(Ph), respectively. The ³¹P NMR spectrum displays a singlet resonance at δ 159.35 attributed to the P(OMe)₃ ligand.

2.245(3)2.250(9)Ru-P Ru-C1 Ru-C2 2.142(10) Ru–C3 1.934(10) C1-C2 1.422(14) C2-C3 1.418(13) C3-C4 1.382(13) C4-C5 1.439(14) C4-C6 1.399(14) C5-N1 1.124(13) 1.135(14) C6-N2 P-Ru-C1 80.7(3) P-Ru-C2 104.3(3)P-Ru-C3 89.3(3) C1-C2-C3 111.1(9) C3-C2-C13 C1-C2-C13 128.8(8) 120.0(9)

C3-C4-C5

Ru-C1-C2

120.6(9)

67.0(5)

144.8(7)

122.7(9)

118.5(6)

Ru-C3-C4

C3-C4-C6

Ru-C1-C7

Table 2 Selected bond distances (Å) and angles (°) of [RuCp- $\{P(OMe)_3\}\{\eta^3\text{-}C(CN)_2C(Ph)C=CH(Ph)\}]$ 4

Fig. 2 An ORTEP drawing of complex 4.

No similar reaction was observed for 3b or 3c. The weak bonding of the PPh₃ ligand in 3a could possibly be owing to the presence of the P(OMe)₃ ligand. The Ru–P bonds in 3b and 3c should be relatively stronger.

The structure of complex 4 has been determined by a singlecrystal X-ray diffraction analysis. An ORTEP drawing is shown in Fig. 2. Selected bond distances and angles are listed in Table 2. The co-ordination sphere consists of a η^5 -C₅H₅ group (Ru– C(Cp) 2.183–2.253 Å, average 2.214 Å), a P(OMe)₃ ligand (Ru– P 2.245(3) Å) and a η^3 -allylic ligand (Ru–C1 2.250(9), Ru–C2 2.142(10), Ru–C3 1.934(10) Å). The η^3 -allylic ligand is formed by co-ordination of the C1–C2 bond of the butadienyl ligand and there is delocalization between C–C single and C=C double bonds (C2–C3 1.418(13); C1–C2 1.422(14); C3–C4 1.382(13) Å).

Reaction of complex 4 with 'BuNC in CH₂Cl₂ at refluxing temperature for 2 d afforded the butadienyl complex [RuCp-{P(OMe)₃}(CN'Bu){C[=C(CN)₂]C(Ph)CH(Ph)}] **5**. The ³¹P NMR spectrum displays a singlet resonance at δ 159.2 assignable to the P(OMe)₃ ligand. The ¹H NMR spectrum displays three singlet resonances at δ 5.97, 4.63 and 1.34 assignable to CHPh, Cp and C(CH₃)₃, respectively, and a doublet resonance at δ 3.57 with $J_{H-P} = 11.6$ Hz assignable to P(OMe)₃. The η^3 allylic ligand in 4 became η^1 bonding and the co-ordination site was replaced by a donor *tert*-butyl cyanide ligand. Complex **5** is thermally more stable than **3b** and **3c**. Thermolysis of complex **5** in benzene at refluxing temperature for two days did not remove the phosphite or the isocyanide ligand.

Reaction of ruthenium acetylides with Cl(Ph)C=C(CN)₂

Metal acetylide complexes are known to react readily with activated olefins containing electron-withdrawing groups affording [2 + 2] cycloaddition products. We therefore treated vinyl chloride with the acetylide complex **1a** to see if the reaction would proceed in a similar manner. The reaction of **1a** with an excess of Cl(Ph)C=C(CN)₂ in CH₂Cl₂ at room temperature for 24 h

Table 3Selected bond distances (Å) and angles (°) of $[RuCp-(PPh_3){P(O)(OMe)_2} {C=C(Ph)C(Ph)C(CN)_2}] \cdot (OH)(Ph)C=C(CN)_2 6$

Ru–P1	2.3437(14)	Ru–P2	2.2965(16)
Ru–C1	1.790(5)	C1-C2	1.362(6)
C2–C3	1.434(7)	C2-C5	1.501(7)
C3–C4	1.373(7)	C4-C17	1.447(8)
C4C18	1.492(7)	O1–H	1.00(5)
O4–H	1.45(5)	C17-N1	1.143(8)
C18–N2	1.136(7)	P2O1	1.475(3)
P2-O2	1.593(4)	P2-O3	1.585(3)
P1–Ru–P2	92.01(5)	P1-Ru-C1	95.85(14)
Ru-C1-C2	173.9(4)	C1C2C3	120.4(4)
C2-C3-C4	123.5(4)	C3-C4-C17	124.7(5)
C3-C4-C18	122.6(5)	P2O1H	171(3)

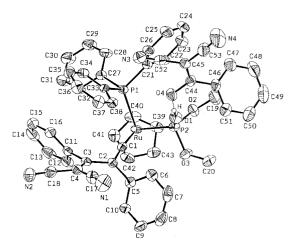
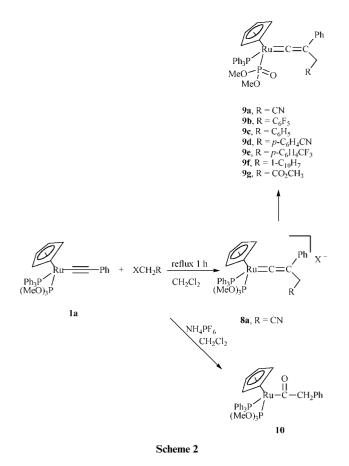


Fig. 3 An ORTEP drawing of complex 6.


gave an orange-red solution from which the neutral vinylidene complex [RuCp(PPh₃){P(O)(OMe)₂} {=C=C(Ph)C(Ph)-C(CN)₂}] **6** was obtained in 88% yield. The ¹H NMR spectrum displays inequivalent OMe resonances at δ 3.20 and 2.96 both with $J_{\text{H-P}} = 11.6$ Hz. Two doublet ³¹P resonances appear at δ 105.6 and 43.7 with $J_{\text{P-P}} = 47.8$ Hz, the former shifted significantly from δ 158.3 of P(OMe)₃ in **1a** indicating that an Arbuzov-like dealkylation ¹⁶ of the P(OMe)₃ ligand could have occurred in the reaction. The ¹³C NMR spectrum displays a doublet of doublet resonance at δ 339.8 attributed to C_a, indicating the presence of a vinylidene ligand. The product is thus assumed to have a neutral vinylidene structure and a phosphonate ligand.

Evaporation of the solvent of the crude product caused formation of orange crystals. Complex 6 cocrystallized with (OH)(Ph)C=C(CN)₂, a product resulting from substitution of the chlorine atom of excess of $Cl(Ph)C=C(CN)_2$. The structure of 6 was fully characterized by a single-crystal X-ray diffraction analysis. An ORTEP drawing is shown in Fig. 3. Selected bond distances and angles are listed in Table 3. The short Ru-Cl bond of 1.790(5) Å is typical of a ruthenium vinylidene system and so is the C1-C2 bond of 1.362(6) Å.18 The rutheniumvinylidene linkage is nearly linear; the bond angle Ru–C1–C2 is 173.9(4)°. The relatively short bond length P2–O1 (1.475(3) Å) with no methyl group bound to O1 indicates the presence of a phosphonate ligand. The bonds P2-O2 and P2-O3 (1.593(4) and 1.585(3) Å) are relatively longer. There is an intermolecular hydrogen bond between the phosphonate ligand of 6 and (OH)(Ph)C=C(CN), with O1-H and O4-H 1.00(5) and 1.45(5) Å, respectively.

Lacking phosphite ligands, both complexes **1b** and **1c**, upon reacting with Cl(Ph)C=C(CN)₂, afforded in high yield the cationic vinylidene complexes [RuCp(L)(L'){=C=C(Ph)C(Ph)-C(CN)₂}]Cl **7b**, (LL' = dppe) and **7c**, (L = PPh₃, L' = CN'Bu), respectively. For **7b** the ³¹P NMR spectrum displays a singlet resonance at δ 77.4 assignable to the dppe ligand. In the ¹³C NMR spectrum the triplet resonance at δ 351.8 with $J_{C-P} = 14.8$ Hz is assigned to C_a . The ¹H NMR spectrum of **7c** displays resonances at δ 5.66 and 1.17 attributed to Cp and C(CH₃)₃, respectively, and the ³¹P NMR spectrum displays a singlet resonance at δ 44.1 assignable to the PPh₃ ligand. The ¹³C NMR spectrum displays a doublet resonance at δ 345.2 with $J_{C-P} = 12.0$ Hz assignable to C_a of the vinylidene ligand and a doublet resonance at δ 198.6 with $J_{C-P} = 16.3$ Hz assignable to the CN'Bu. It is not surprising that the chloride atom of Cl(Ph)C=C(CN)₂ behaved as a good leaving group and ended up as a counter anion after the formation of the cationic vinylidene complexes; NH₄PF₆ was added to exchange the counter anion after the reaction was completed.

Other phosphonate vinylidene complexes

Treatment of complex **1a** with ICH₂CN in CH₂Cl₂ for 10 min afforded the vinylidene complex $[RuCp(PPh_3){P(OMe)_3}=$ C=C(Ph)CH₂CN}]I **8a** in 64.8% yield (Scheme 2). In the ¹H

NMR spectrum the two dd resonances at δ 3.27 and 3.17 are assigned to the two non-equivalent methylene protons. Lengthening the reaction time caused Arbuzov-like dealkylation to occur, leading to formation of the phosphonate complex [RuCp- $(PPh_3){P(O)(OMe)_2} = C = C(Ph)CH_2CN]$ 9a. Transformation of the phosphite ligand to a phosphonate ligand was revealed by a significant shift of the ³¹P NMR resonance from δ 135.3 to 95.4. Formation of CH₃I was seen in the ¹H NMR spectrum. The observation of the sequential transformation seems to indicate that formation of the phosphonate ligand required halide ion. The most characteristic spectroscopic data of the two vinylidene complexes consist of a strongly deshielded Co resonance as a doublet of doublet at δ 348.6 ± 2.5 in the ¹³C NMR spectrum.¹⁹ Since 8a is a cationic complex containing a P(OMe)₃ ligand, it is not surprising to see an Arbuzov-like dealkylation in the presence of I⁻ counter anion to give the phosphonate complex 9a.

4226 J. Chem. Soc., Dalton Trans., 1999, 4223–4230

Table 4 Selected bond distances (Å) and angles (°) of $[RuCp(PPh_3)-{P(OMe)_3}(COCH_2Ph)]$ 10

Ru–P1 Ru–C1 C1–O1	2.2153(15) 2.010(5) 1.326(7)	Ru–P2 C1–C2 C2–C3	2.3097(15) 1.518(7) 1.510(8)
P1–Ru–P2 P2–Ru–C1 Ru–C1–O1 C1–C2–C3	93.53(5) 93.06(15) 128.3(4) 119.0(5)	P1-Ru-C1 Ru-C1-C2 O1-C1-C2	93.53(15) 120.6(4) 111.0(4)

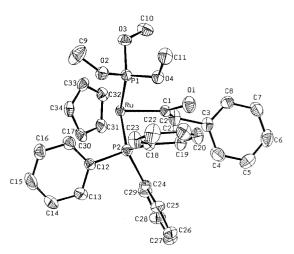


Fig. 4 An ORTEP drawing of complex 10.

In the presence of acid the newly formed carbon–carbon bond of complex **8a** is easily cleaved. Since NH_4PF_6 was used in the preparation, it was converted into HPF_6 . Thus complex **8a** with PF_6^- counter anion prepared at room temperature is unstable particularly in CH_2Cl_2 solution. It decomposes to give the acyl complex $[RuCp(PPh_3){P(OMe)_3}(COCH_2Ph)]$ **10**. With I⁻ anion, **8a** is stable for one day and then the Arbuzovlike dealkylation occurs to give neutral vinylidene complex **9a**. The presence of HPF_6 is required for the formation of acyl complex **10**. In fact, in 1980, Bruce and Swincer²⁰ reported a similar reaction and proposed a possible mechanism.

The molecular structure of complex **10** has been determined by an X-ray diffraction study. An ORTEP drawing is shown in Fig. 4. Selected bond distances and bond angles are listed in Table 4. The bond distance of Ru–C1 (2.010(5) Å) is typical for a Ru–C single bond and that of C1–O1 (1.326(7) Å) is typical for a C–O double bond. The bond angles of Ru–C1–O1 (128.3(4)°) and O1–C1–C2 (111.0(4)°) are slightly deviated from that of a typical C (sp²) hybidization which may be due to the steric effect between the phenyl group of the acyl ligand and the bulky PPh₃ ligand.

Our attempts to prepare similar vinylidene complexes with a trimethyl phosphite ligand all led to the corresponding neutral phosphonate complexes [RuCp(PPh₃){P(=O)(OMe)₂}{=C= C(Ph)CH₂R}], R = C₆F₅ **9b**; R = C₆H₅ **9c**; *p*-NCC₆H₄ **9d**; R = *p*-F₃CC₆H₄ **9e**; 1-C₁₀H₇ **9f** or CO₂CH₃ **9g** in high yield (Scheme 2). The most characteristic spectroscopic data of these vinylidene complexes again consist of a strongly deshielded resonance as a triplet at δ 348 ± 3 in the ¹³C NMR spectrum and two doublet ³¹P NMR resonances at around δ 96 ± 2 and 49 ± 2 attributed to P(O)(OMe)₂ and PPh₃, respectively. Complexes **9a–9g** are all deep red oils, possibly because of the presence of phosphonate ligand and are stable in solution and in air for more than one month. Attempted deprotonation failed to give a cyclopropenyl complex, possibly due to lack of a positive charge.

Conclusion

The [2 + 2] cycloaddition of the unsymmetrical olefin HPhC=

 $C(CN)_2$ to [RuCp(L)(L')(C=CPh)] gave cyclobutenyl complexes 2a-2c and butadienyl complexes 3a-3c. Further pyrolysis of 2a and 3a gave the η^3 -allylic complex 4 by loss of a PPh₃ ligand. The reaction of **1a** with ClPhC=C(CN)₂ proceeded through an Arbuzov-like dealkylation and resulted in formation of the neutral vinylidene complex [RuCp(PPh₃)- $\{P(O)(OMe)_2\} \{=C=C(Ph)C(Ph)C(CN)_2\}$] 6. The reaction of 1b and 1c with Cl(Ph)C=C(CN)₂ afforded cationic vinylidene complexes $[RuCp(L)(L') = C = C(Ph)C(Ph)C(CN)_2 Cl 7.$ In Cl(Ph)C=C(CN)₂, the two strong electron-withdrawing CN groups make the chlorine atom a good leaving group. The Arbuzov-like dealkylation reaction is not uncommon for such a ruthenium entity with a vinylidene ligand. The reaction of 1a with organic halide XCH₂R afforded neutral phosphonate vinylidene complexes [RuCp(PPh₃){P(O)(OMe)₂}{=C=C(Ph)- CH_2R].

Experimental

General procedures

All manipulations were performed under nitrogen using vacuum-line, dry-box, and standard Schlenk techniques. Dichloromethane was distilled from CaH₂ and diethyl ether and THF from sodium diphenylketyl. All other solvents and reagents were of reagent grade used without further purification. The NMR spectra were recorded on Bruker AC-200 and AM-300WB FT-NMR spectrometers at room temperature (unless stated otherwise) and are reported in units of δ with residual protons in the solvents as an initial standard (CDCl₃, δ 7.24: acetone- d_6 , δ 2.04). The FAB mass spectra were recorded on a JEOL SX-102A spectrometer. The complexes [RuCp(L)(L')(C=CPh)] 1a $[L = PPh_3, L' = P(OMe)_3]$, 1b (LL' = dppe) and 1c $(L = PPh_3, L = CN'Bu)$ were prepared following the methods reported.²¹ Elemental analyses and X-ray diffraction studies were carried out at the Regional Center of Analytical Instrument located at the National Taiwan University.

Syntheses

 $[RuCp(PPh_3){P(OMe)_3}{C=C(Ph)CH(Ph)C(CN)_2}]$ 2a and [RuCp(PPh₃){P(OMe)₃}{C[=C(CN)₂]C(Ph)CH(Ph)}] 3a. To a solution of complex 1a (500 mg, 0.766 mmol) in CH₂Cl₂ (20 mL) was added H(Ph)C=C(CN)₂ (354.3 mg, 2.29 mmol) and the solution stirred for 1 h at room temperature. The ¹H and ³¹P NMR spectra of the product indicated formation of two major products 2a and 3a in a ratio of 1:1. Reduced the solvent to ca. 3 mL under vacuum followed by addition of hexane gave yellow precipitates. After filtration, the solid was further washed with 2×20 mL of hexane and 10 mL of diethyl ether and dried under vacuum to give a mixture of 2a and 3a (544.5 mg, 0.674 mmol) in a total yield of 75%. Crystallization of the mixture from CH₂Cl₂-hexane (1:3) gave yellow crystals. At room temperature 3a in CDCl₃ solution was converted into a mixture of 2a and 3a (1:1) in 30 min. Spectroscopic data for 2a: ¹H NMR (CDCl₃): δ 7.90–6.35 (m, 25 H, Ph), 5.10 (s, 1 H, CH), 5.01 (s, (CDCl₃) δ 148.9 and 58.8 (2d, $J_{P-P} = 10.93$ Hz, OCH₃); ³¹P NMR (CDCl₃) δ 148.9 and 58.8 (2d, $J_{P-P} = 70.2$ Hz); ¹³C NMR (CDCl₃) δ 164.6 (q, C_a , $J_{C-P} = 12.6$, 7.2), 163.0 (CPh), 137.4– 123.0 (Ph), 113.7, 112.5 (2CN), 82.9 (C(CN)₂), 82.6 (Cp) and 52.2 (d, $J_{C-P} = 9.0$ Hz, OCH₃); MS (m/z, ¹⁰²Ru) 809.1 (M⁺ + 1), 654.1 (M⁺ = PhHC C(CPR) = 4420.0 (M⁺ = PhHC C(CPR)) $654.1 (M^+ - PhHC=C(CN)_2) and 429.0 (M^+ - PhHC=C(CN)_2-$ CCPh). Spectroscopic data for 3a: ¹H NMR (CDCl₃) & 7.76-6.44 (m, 25 H, Ph), 4.66 (s, 1 H, CH), 4.74 (s, Cp) and 3.37 (d, 9 H, $J_{H-P} = 11.13$ Hz, OCH₃); ³¹P NMR (CDCl₃) δ 148.2 and 58.3 (2d, $J_{P-P} = 70.35$ Hz); ¹³C NMR (CDCl₃) δ 165.8 (q, C_{α} , $J_{C-P} = 15.7$, 8.9), 162.9 (*CPh*), 139.6–118.2 (*Ph*), 117.1, 116.6 (2CN), 84.2 (C(CN)₂), 82.7 (Cp), 60.5 (CHPh) and 52.1 (d, $J_{C-P} = 9.0$ Hz, OCH₃); MS (m/z, ¹⁰²Ru) 809.1 (M⁺ + 1), 654.1 $(M^+ - PhHC=C(CN)_2)$ and 429.0 $(M^+ - PhHC=$

C(CN)₂-CCPh). Calc. for $C_{44}H_{40}N_2O_3P_2Ru$: C, 65.42; H, 4.99; N, 3.47. Found: C: 65.73; H, 4.85; N, 3.59%.

[RuCp(PPh₃)(CN'Bu){C=C(Ph)CH(Ph)C(CN)₂}] 2c. To a solution of complex **1c** (500 mg, 0.817 mmol) in CH₂Cl₂ (20 mL) was added H(Ph)C=C(CN)₂ (377.5 mg, 2.45 mmol) and the solution was stirred for 10 min at room temperature. Removal of the solvent under vacuum followed by addition of hexane gave a yellow precipitate. After filtration, the solid was further washed with 2 × 20 mL of hexane and 10 mL of diethyl ether and dried under vacuum to give the product **2c** (544.5 mg, yield 87%). Spectroscopic data for **2c**: ¹H NMR (C₆D₆) δ 7.89–6.90 (m, 25 H, Ph), 4.98 (s, Cp), 4.85 (s, 1 H, CH) and 1.21 (s, 9 H, C(CH₃)₃); ³¹P NMR (CDCl₃) δ 59.2; ¹³C NMR (CDCl₃) δ 243.3 (d, CN'Bu, $J_{C-P} = 10.1$), 167.2 (d, C_a , $J_{C-P} = 9.9$ Hz), 158.7 (CPh), 137.8–125.0 (Ph), 117.6, 115.5 (2CN), 84.0 (Cp), 82.4 (*C*(CN)₂), 58.1 (CHPh), 56.6 (*C*(CH₃)₃) and 30.4 (C(*C*H₃)₃); MS (m/z, ¹⁰²Ru) 767.2 (M⁺ + 1), 613.0 (M⁺ – PhHC=C(CN)₂) and 512.0 (M⁺ – PhHC=C(CN)₂-CCPh).

[RuCp(PPh₃)(CN'Bu){C[=C(CN)₂]C(Ph)CH(Ph)}] 3c. A CH₂Cl₂ solution of complex 2c (200 mg, 0.261 mmol) was stirred at room temperature for 2 h. Removal of the solvent under vacuum followed by addition of hexane gave a yellow precipitate which was dried under vacuum, giving the product 3c (186.0 mg, 93%). ¹H NMR (CDCl₃): δ 7.89–6.72 (m, 25 H, Ph), 5.33 (s, H), 4.40 (s, Cp) and 1.05 (s, 9 H, C(CH₃)₃). ³¹P NMR (CDCl₃): δ 56.0. ¹³C NMR (CDCl₃): δ 233.8 (d, $J_{C-P} = 10.1$, CN'Bu), 158.3 (d, C_a , $J_{C-P} = 9.9$ Hz), 155.1 (CPh), 137.4–115.5 (Ph), 113.6, 112.5 (2CN), 88.9 (C(CN)₂), 84.2 (Cp), 57.0 (C(CH₃)₃), 56.7 (CHPh) and 30.5 (C(CH₃)₃); MS (*m*/z, ¹⁰²Ru): 767.2 (M⁺ + 1), 505.0 (M⁺ + 1 – PPh₃) and 422.0 (M⁺ + 1 – PPh₃-'BuNC). Calc. for C₄₀H₄₆N₃PRu: C, 72.04; H, 5.26; N, 5.48. Found: C, 72.66; H, 5.07; N, 5.33%.

[RuCp(dppe){C=C(Ph)CH(Ph)C(CN)₂}] 2b. This complex (523.3 mg, 0.638 mmol, yield 85%) was prepared from 1b (500 mg, 0.751 mmol) using the same procedure as that for 2c and a reaction time of 1 h at room temperature. ¹H NMR (C_6D_6): δ 8.17–6.63 (m, 30 H, Ph), 5.24 (s, 1 H, CH), 4.67 (s, Cp) and 2.68-2.40 (m, CH₂CH₂). ³¹P NMR (CDCl₃): δ 98.1 and 96.9 (2br). ¹³C NMR (CDCl₃): δ 164.9 (t, C_a, $J_{C-P} = 17.0$), 157.1 (CPh), 136.8–122.8 (Ph), 119.1, 117.4 (2CN), 84.9 (Cp), 82.3 (C(CN)₂), 30.1 and 29.5 (2d, $J_{C-P} = 18.0$ Hz); MS (m/z, ¹⁰²Ru) 821.1 (M⁺ + 1), 666.0 (M⁺ – PhHC=C(CN)₂) and 565.0 (M⁺ – PhHC=C(CN)₂-CCPh). Complex [RuCp(dppe){C[=C(CN)₂]-C(Ph)CH(Ph)}] **3b** (180.0 mg, yield 90%) was prepared from **2b** (200 mg, 0.244 mmol) using the same procedure as that for 3c and the reaction time was 8 h at room temperature. ¹H NMR (C₆D₆): δ 7.91–6.97 (m, 30H, Ph), 5.95 (br, 1H, CH), 4.43 (s, Cp) and 2.70–2.05 (m, CH₂CH₂). ³¹P NMR (CDCl₃): δ 94.0 and 92.3 (2br). ¹³C NMR (CDCl₃): δ 164.9 (t, C_a, J_{C-P} = 17.0), 157.1 (CPh), 136.8-122.8 (Ph), 119.1, 117.4 (2CN), 84.9 (Cp), 82.3 (*C*(CN)2), 30.1 and 29.5 (2d, $J_{C-P} = 18.0$ Hz); MS (*m*/*z*, ¹⁰²Ru) 821.1 (M⁺ + 1) and 565.0 (M⁺ - PhHC=C(CN)₂-CCPh). Calc. for C₄₉H₄₀N₂P₂Ru: C, 71.78; H, 4.92; N, 3.42. Found: C, 72.05; H, 4.75; N, 3.32%.

[RuCp{P(OMe)₃}{η³-C[=C(CN)₂]C(Ph)CH(Ph)}] 4. To a solution of complex **1a** (500 mg, 0.766 mmol) in benzene H(Ph)C=C(CN)₂ (345.3 mg, 2.29 mmol) was added and the solution refluxed for 48 h. Removal of benzene solution under vacuum followed by addition of 50 mL of hexane gave a yellow precipitate. After filtration, the solid was further washed with 20×2 mL of hexane, 10 mL of diethyl ether and dried under vacuum, giving the product **4** (368 mg) in 88% yield. ¹H NMR (CDCl₃): δ 7.45–6.72 (m, 10 H, Ph), 4.94 (s, Cp), 3.63 (d, 9 H, $J_{H-P} = 11.75$, OCH₃) and 3.43 (d, 1 H, CH(Ph), $J_{H-P} = 12.30$ Hz). ³¹P NMR (CDCl₃): δ 159.35 (P(OMe)₃). ¹³C NMR (CDCl₃):

δ 223.5 (d, $J_{C-P} = 14.6$, C_u), 141.6, 137.0, 131.0–126.0 (Ph), 118.2, 113.0 (2CN), 86.1 (Cp), 78.6 (d, $J_{C-P} = 8.68$, $C(CN)_2$), 71.3 (C(Ph)=CH(Ph)) and 52.6 (d, $J_{C-P} = 7.67$ Hz, OCH₃); MS (m/z, ¹⁰²Ru): 546.1 (M⁺) and 291.0 (M⁺ – PhHC=C(CN)₂-CCPh). Calc. for C₂₆H₂₅N₂O₃PRu: C, 57.24; H, 4.62; N, 5.14. Found: C, 57.65; H, 4.48; N, 5.03%.

[RuCp{P(OMe)₃}(CN'Bu){C[C(CN)₂]C(Ph)CH(Ph)}] 5. To a solution of complex 4 (100 mg, 0.183 mmol) in CH₂Cl₂, 'BuCN (62.1 µL, 0.550 mmol) was added and the solution refluxed for 48 h. Removal of the solvent under vacuum followed by addition of 30 mL of hexane gave a yellow precipitate. After filtration, the solid was further washed with 10×2 mL of hexane, 10 mL of diethyl ether and dried under vacuum, giving the product 5 (82.7 mg, yield 72%). ¹H NMR (CDCl₃): δ 7.65– 6.96 (m, 25 H, Ph), 5.97 (s, 1 H, CH), 4.63 (s, Cp), 3.57 (d, 9 H, $J_{\text{H-P}} = 11.55$ Hz, OCH₃) and 1.34 (s, C(CH₃)₃). ³¹P NMR (CDCl₃): δ 159.2. ¹³C NMR (CDCl₃): δ 236.0 (d, CN'Bu, $J_{C-P} = 17.9$), 154.5, 138.7–117.8 (Ph, C_{β} and C_{γ}), 119.6, 115.3 (2CN), 85.2 (Cp), 57.0 (s, $C(CH_3)_3$), 51.8 (d, $J_{C-P} = 3.8$ Hz, OCH₃) and 29.6 (s, C(CH₃)₃); MS (m/z, ¹⁰²Ru): 629.1 (M⁺), 505.1 $(M^+ - P(OMe)_3)$ and 422.0 $(M^+ - P(OMe)_3-'BuNC)$. Calc. for C₃₁H₃₄N₃O₃PRu: C, 59.22; H, 5.45; N, 6.68. Found: C, 59.76; H, 5.32; N, 6.47%.

 $[RuCp(PPh_3){P(O)(OMe)_2} = C = C(Ph)C(Ph)C(CN)_2]$ 6. To a solution of complex 1a (150 mg, 0.230 mmol) in CH₂Cl₂, Cl(Ph)C=C(CN)₂ (24.9 mg, 0.689 mmol) was added and the solution stirred at room temperature for 24 h, the solution changing from yellow to red. At this stage, crystals of 6 containing (OH)PhC=C(CN)₂ formed if the solvent slowly evaporated in the air. The solvent was reduced to ca. 5 mL then the mixture was added to a 50 mL solution of diethyl ether yielding orange-red precipitates of 6. In order to remove $(OH)PhC=C(CN)_2$ (which could be formed by the reaction of water in the solution and excess of $Cl(Ph)C=C(CN)_2$, the precipitate was further washed with 10 mL of diethyl ether and subsequently with 10×2 mL of hexane, then dried under vacuum giving 6 (160.0 mg, yield 87.9%). ¹H NMR (CDCl₃): δ 7.80–7.14 (m, 25 H, Ph), 5.33 (s, Cp), 3.20 (d, 3 H, $J_{\text{H-P}} = 11.61, \text{ OCH}_3$ 2.96 (d, 3 H, $J_{\text{H-P}} = 11.63 \text{ Hz}, \text{ OCH}_3$). ³¹P NMR (CDCl₃): δ 105.6 and 43.7 (2d, J_{P-P} = 47.8 Hz). ¹³C NMR (CDCl₃): δ 339.8 (q, ${}^{1}J_{C-P} = 14.1$, ${}^{2}J_{C-P} = 4.7$, C_a), 167.6 (C_β), 134.4–127.8 (Ph), 114.8, 114.0 (2CN), 94.2 (Cp), 85.6 (C_y), 78.2 ($C(CN)_2$) and 52.3 (t, $J_{C-P} = 11.2 \text{ Hz}$, $P(O)(OCH_3)_2$); MS $(m/z, {}^{102}\text{Ru})$: 793.0 $(M^+ + 1)$, 539.0 $(M^+ - \text{CH}=C(\text{CN})_2)$ and 428.9 (M⁺ – CH=C(CN)₂-P(O)(OMe)₂). Calc. for $C_{43}H_{36}N_{2}$ -O₃P₂Ru: C, 65.22; H, 4.58; N, 3.54. Found: C, 65.56; H, 4.77; N, 3.34%

Complexes $[RuCp(dppe) = C = C(Ph)C(Ph)C(CN)_2] [PF_6]$ 7b (83% yield) and $[RuCp(PPh_3)('BuNC) \{=C=C(Ph)C(Ph) C(CN)_{2}$ [PF₆] 7c (76% yield) were prepared using the same procedure as that for 6 and NH₄PF₆ was added to exchange the counter anion after the reaction was complete. Spectroscopic data for 7c: ¹H NMR (CDCl₃) δ 7.78–6.92 (m, 25 H, Ph), 5.66 (s, Cp) and 1.17 (s, 9 H, C(CH₃)₃); ³¹P NMR (CDCl₃) δ 44.07; ¹³C NMR (CDCl₃) δ 345.2 (d, $J_{C-P} = 12.0$, C_{α}), 198.6 (d, $J_{C-P} = 16.3, CN'Bu$), 164.7 (C_a), 137.1–126.0 (Ph), 113.7, 112.4 (2CN), 94.9 (Cp), 85.5 (d, $J_{C-P} = 13.74$ Hz, C_{γ}), 78.3 ($C(CN)_2$), 60.5 ($C(CH_3)_3$) and 29.8 (s, $C(CH_3)_3$); MS (m/z, ¹⁰²Ru): 766.1 $(M^{+} - PF_{6})$, 540.0 $(M^{+} - PF_{6} - CH=C(CN)_{2} + CO)$ and 512.0 (M⁺ – PF₆-CH=C(CN)₂). Calc. for $C_{49}H_{39}F_6N_2P_3Ru: C$, 61.06; H, 4.08; N, 2.91. Found: C, 61.37; H, 3.96; N, 2.78%. Spectroscopic data for 7b: ¹H NMR (CDCl₃) δ 7.81–6.49 (m, 30H, Ph), 5.46 (s, Cp) and 3.70-3.15 (m, 4H, CH₂CH₂); ³¹P NMR (CDCl₃) δ 77.4; ¹³C NMR (CDCl₃) δ 351.8 (t, J_{C-P} = 14.8, C_{a}), 166.0 (C_{β}), 135.8–126.2 (Ph), 114.1, 113.2 (2CN), 93.9 (Cp), 85.6 (C_{γ}), 80.3 (*C*(CN)₂) and 28.9 (t, $J_{C-P} = 22.9$ Hz, PCH_2CH_2P ; MS (m/z, ¹⁰²Ru) 819.1 (M⁺ – PF₆), 593.0 (M⁺ – PF_6 -CH=C(CN)₂+CO), 565.0 (M⁺ – PF₆-CH=C(CN)₂). Calc.

for $C_{46}H_{39}F_6N_3P_2Ru$: C, 60.66; H, 4.32; N, 4.61. Found: C, 61.04; H, 4.40; N, 4.08%.

[RuCp(PPh₃){P(OMe)₃}{=C=C(Ph)CH₂CN}]I 8a. A Schlenk flask was charged with ICH₂CN (0.20 mL, 1.53 mmol), complex 1a (0.20 g, 0.31 mmol) and 10 mL of CH₂Cl₂. The mixture was stirred at room temperature for 10 min. The solvent was reduced to about 3 mL under vacuum and 20 mL of ether were added resulting in an orange precipitation. The mixture was filtered and the solid portion was washed with 20 mL of n-pentane and 20 mL of diethyl ether and dried under vacuum to give 8a (0.163 g, 64.8% yield). ¹H NMR (CDCl₃): δ 7.49–7.06 (m, 20 H, Ph), 5.54 (s, Cp), 3.37 (d, 9 H, $J_{H-P} = 11.1$, $P(OMe)_3$, 3.27 and 3.17 (dd, CH_2CN , $J_{H-H} = 17.8$ Hz). ³¹PNMR (CDCl₃): δ 135.4 and 44.8 (2d, $J_{P-P} = 49.30$ Hz). ¹³C NMR (CDCl₃): δ 351.7 (q, C_a, ²J_{C-P} = 13.9, 20.0), 133.1–126.4 (m, Ph), 118.2 (CN), 116.4 (C_{β}), 93.0 (Cp), 54.2 (d, $J_{C-P} = 9.6$ Hz, P(OMe)₃) and 12.3 (CH₂CN); MS (m/z, ¹⁰²Ru): 694.1 $(M^+-I),\ 553.1\ (M^+-I\text{-}CH_2CN\text{-}CCPh)$ and 429.1 (M^+-I) I-CH₂CN-CCPh-P(OMe)₃). Calc. for C₃₆H₃₆INO₃P₂Ru: C, 52.69; H, 4.42; N, 1.71. Found: C, 52.89; H, 4.36; N, 1.65%.

 $[RuCp(PPh_3){P(O)(OMe)_2} = C = C(Ph)CH_2CN]$ 9a. Α Schlenk flask was charged with ICH₂CN (0.20 mL, 1.53 mmol), complex 1a (200 mg, 0.31 mmol) and 10 mL of CH₂Cl₂. The mixture was heated to reflux for 1 h. The solvent was removed under vacuum and the residue washed with hexane and dried under vacuum to give the red oily product 9a (186.9 mg, 90% yield). ¹H NMR (CDCl₃): δ 7.50–6.86 (m, 20H, Ph), 5.32 (s, Cp), 3.45, 3.37 (2d, $J_{H-H} = 12.4$, CH₂CN), 3.31 and 2.95 $(2d, 6 H, J_{H-P} = 11.5 Hz, OCH_3)$. ³¹P NMR (CDCl₃): δ 95.4 and 48.1 (2d, $J_{P-P} = 47.0$ Hz). ¹³C NMR (CDCl₃): δ 346.2 (t, C_{α} , $J_{C-P} = 16.0$, 133.5–119.7 (m, Ph), 117.8 (CN), 116.7 (C_{β}), 92.3 (Cp), 50.3 (d, $J_{C-P} = 8.4$, P(OMe)₃), 49.8 (d, $J_{C-P} = 9.4$ Hz, P(OMe)₃) and 12.3 (CH₂); MS (m/z, ¹⁰²Ru): 680.1 (M⁺ + 1), 539.1 (M $^+$ – CH_2CN-CCPh) and 429.1 (M $^+$ – CH_2CN-CCPh - P(O)(OMe)₂). Calc. for C₃₅H₃₃NO₃P₂Ru: C, 61.94; H, 4.90; N, 2.06. Found: C, 62.09; H, 4.72; N, 1.68%. The complexes $[RuCp(PPh_3){P(=O)(OMe)_2}{=C=C(Ph)CH_2R}]$ $(R = C_6F_5$ **9b**; Ph **9c**; *p*-NCC₆H₄CN **9d**; *p*-F₃CC₆H₄ **9e**; 1-C₁₀H₇ **9f** or CO_2CH_3 **9g**) were prepared from the reaction of **1a** (0.20 g, 0.31 mmol) with BrCH₂C₆F₅, BrCH₂Ph, BrCH₂(C₆H₄CN-p), BrCH₂(C₆H₄CF₃-p), BrCH₂(1-C₁₀H₇) or BrCH₂CO₂CH₃ using a similar procedure to that for 9a. Spectroscopic data for 9b: ¹H NMR (CDCl₃) δ 7.86–6.82 (m, 20 H, Ph), 5.28 (s, Cp), 3.89, 3.65 (2d, $J_{\rm H-H}$ = 15.6, CH₂), 3.16 and 2.99 (2d, 6 H, $J_{\rm H-P}$ = 11.5 Hz, OCH₃), ³¹P NMR (CDCl₃) δ 97.9 and 50.4 (2d, $J_{\rm P-P}$ = 45.5 Hz, OCH₃), 1 FURK (CDC₁₃) δ 346.4 (t, C_a, ²J_{C-P} = 17.4), 146.3–125.8 (m, Ph), 123.0 (C_β), 92.1 (Cp), 50.2, 49.7 (2d, J_{C-P} = 7.3 Hz, OCH₃) and 17.2 (CH₂); MS (*m*/*z*, ¹⁰²Ru) 821.1 (M⁺ + 1), 539.1 $(M^+-CH_2C_6F_5-CCPh)$ and 429.1 $(M^+ - CH_2C_6F_5-CCPh-P(O)-$ (OMe)₂). Calc. for C₃₅H₃₃F₅O₃P₂Ru: C, 58.61; H, 4.06. Found: C, 58.97; H, 3.92%. Spectroscopic data for 9c: ¹H NMR (CDCl₃) & 7.76-6.89 (m, 20 H, Ph), 5.29 (s, Cp), 3.84, 3.68 (2d, $J_{\text{H-H}} = 16.2$, CH₂), 3.30 and 3.06 (2d, 6 H, $J_{\text{H-P}} = 11.6$ Hz, OCH₃); ³¹P NMR (CDCl₃) δ 97.5 and 51.2 (2d, $J_{P-P} = 48.7$ Hz); ¹³C NMR (CDCl₃) δ 347.1 (t, C_a, J_{C-P} = 16.2, 15.7), 133.5–119.7 (m, Ph), 117.8 (CN), 116.7 (C_β), 92.3 (Cp), 50.3, 49.8 (2d, 10.2 M), 116.7 (C_β), 92.3 (Cp), 50.3, 49.8 (2d, 10.2 M), 10.2 M). $J_{C-P} = 8.93$ Hz, OCH₃) and 12.3 (CH₂); MS (*m*/*z*, ¹⁰²Ru) 732.1 $(M^+ + 1)$, 539.1 $(M^+ - CH_2Ph-CCPh)$ and 429.1 $(M^+ - CH_2-$ Ph-CCPh-P(O)(OMe)₂). Calc. for C₄₀H₃₈O₃P₂Ru: C, 65.83; H, 5.25. Found: C, 66.01; H, 5.16%. Spectroscopic data for 9d: ¹H NMR (CDCl₃) δ 7.77–6.82 (m, Ph), 5.24 (s, Cp), 3.91, 3.68 (2d, $J_{\text{H-H}} = 16.4$, CH₂), 3.15 and 2.98 (2d, 6 H, $J_{\text{H-P}} = 11.2$ Hz, OCH₃). ³¹P NMR (CDCl₃) δ 95.9, 50.8 (2d, $J_{P-P} = 47.5$ Hz); ¹³C NMR (CDCl₃) δ 349.4 (t, C_a, ²J_{C-P} = 16.0), 147.5–118.3 (m, Ph), 117.8 (CN), 116.7 (C_β), 92.1 (Cp), 50.3, 49.9 (2d, $J_{C-P} = 9.0$ Hz, OCH₃) and 29.8 (CH₂); MS (m/z, ¹⁰²Ru) 757.1 (M⁺ + 1), 539.1 $(M^{\scriptscriptstyle +}-CH_2C_6H_4CN\text{-}CCPh)$ and 429.1 $(M^{\scriptscriptstyle +}-CH_2C_6H_4CN\text{-}$ CCPh-P(O)(OMe)₂). Calc. for C₄₁H₃₇NO₃P₂Ru: C, 65.24; H,

	3a	4	6	10
Formula	$C_{44}H_{40}N_2O_3P_2Ru$	C ₂₆ H ₂₅ N ₂ O ₃ PRu	C ₅₃ H ₄₂ N ₄ O ₄ P ₂ Ru	$C_{34}H_{36}O_4P_2Ru$
М	807.82	546.54	961.95	935.01
Crystal system	Monoclinic	Monoclinic	Triclinic	Monoclinic
Space group	$P2_1/c$	$P2_1/c$	$P\bar{1}$	$P2_1/c$
<i>Ť</i> /Κ	298	298	298	298
a/Å	11.3426(14)	12.1184(18)	10.4298(14)	18.016(3)
b/Å	31.489(5)	14.917(8)	13.883(3)	10.071(3)
c/Å	11.0026(15)	13.498(3)	18.082(4)	22.979(4)
a/°			107.468(22)	
βl°	104.206(12)	92.155(14)	91.791(20)	105.838(14)
y/°			108.375(15)	
$V/Å^3$	3809.6(10)	2438.2(14)	2347.2(8)	4011.1(15)
Ζ	4	4	2	4
μ/cm^{-1}	5.262	7.877	4.392	7.646
Measured reflections	4954	4271	8273	7034
Observed reflections	2517	2169	4526	4591
R, R'	0.043, 0.040	0.058, 0.052	0.044, 0.035	0.045, 0.047

Published on 01 January 1999. Downloaded on 22/10/2014 17:01:53.

4.94; N, 1.86. Found: C, 65.53; H, 4.78; N, 1.77%. Spectroscopic data for 9e: ¹H NMR (CDCl₃) δ 7.76–6.89 (m, Ph), 5.27 (s, Cp), 3.91, 3.68 (2d, $J_{H-H} = 16.3$, CH₂), 3.25 and 3.01 (2d, 6 H, $J_{H-P} = 11.6$ Hz, OCH₃); ³¹P NMR (CDCl₃) δ 96.6, 50.9 (2d, $J_{P-P} = 42.8 \text{ Hz}$; ¹³C NMR (CDCl₃) δ 350.2 (t, C_a, ² $J_{C-P} = 17.1$), 145.7–124.9 (m, Ph, C_{β}), 92.1 (Cp), 50.4 (d, $J_{C-P} = 8.75$, OCH₃), 49.9 (d, $J_{C-P} = 9.21$ Hz, OCH₃) and 29.4 (CH₂); MS (m/z, ¹⁰²Ru) 800.1 (M⁺ + 1), 539.1 (M⁺ - $CH_2C_6H_4CF_3$ -CCPh) and 429.1 $(M^+ - CH_2C_6H_4CF_3-CCPh-P(O)(OMe)_2)$. Calc. for $C_{35}H_{33}F_5$ -O₃P₂Ru: C, 61.73; H, 4.68. Found: C, 61.98; H, 4.55%. Spectroscopic data for 9f: ¹H NMR (CDCl₃) & 7.75-6.84 (m, Ph), 5.24 (s, Cp), 3.89, 3.71 (2d, $J_{H-H} = 16.4$, CH₂), 3.23 and 2.99 (2d, 6 H, $J_{H-P} = 11.5$ Hz, OCH₃); ³¹P NMR (CDCl₃) δ 97.0 and 50.0 (2d, $J_{P-P}^{n-1} = 48.4 \text{ Hz}$; ¹³C NMR (CDCl₃) δ 351.0 (t, C_{α} , ² $J_{C-P} = 16.4$), 138.8-124.3 (m, Ph), 117.1 (C_β), 92.0 (Cp), 50.2, 49.8 (2d, $J_{C-P} = 9.2$ Hz, OCH₃) and 29.8 (CH₂); MS (FAB, ¹⁰²Ru) m/z 782.1 (M⁺ + 1), 539.1 (M⁺ - CH₂C₁₀H₇-CCPh) and 429.1 $(M^+ - CH_2C_{10}H_7 - CCPh - P(O)(OMe)_2)$. Calc. for $C_{44}H_{40}O_3P_2$ -Ru: C, 67.77; H, 5.17. Found: C, 67.95; H, 5.06%. Spectroscopic data for 9g: ¹H NMR (CDCl₃) δ 7.84–6.88 (m, 20 H, Ph), 5.22 (s, Cp), 3.89, 3.75 (2d, $J_{H-H} = 16.5$, $CH_2CO_2CH_3$), 3.17 and 2.90 (2d, 6 H, J_{H-P} = 11.6 Hz, OCH₃); ³¹P NMR (CDCl₃) δ 96.9 and 50.2 (2d, $J_{P-P} = 49.1$ Hz); ¹³C NMR (CDCl₃) δ 350.8 (t, C_a, ${}^{2}J_{C-P} = 15.6$, 173.1 (CO₂CH₃), 135.5–124.8 (m, Ph), 121.0 (C_β), 92.1 (Cp), 50.0, 49.6 (2d, $J_{C-P} = 8.7$ Hz, OCH₃), 51.5 (CH₂- CO_2CH_3) and 28.7 (CO_2CH_3); MS (m/z, ¹⁰²Ru) 712.1 (M⁺ + 1), 539.1 (M^+ – $CH_2CO_2CH_3$ -CCPh) and 429.1 (M^+ – CH_2CO_2 -CH₃-CCPh-P(O)(OMe)₂). Calc. for C₃₆H₃₆O₅P₂Ru: C, 60.75; H, 5.10. Found: C, 61.03; H, 5.02%.

[RuCp(PPh₃){P(OMe)₃}{COCH₂Ph] 10. A Schlenk flask was charged with ICH₂CN (0.20 mL, 1.53 mmol), complex **1a** (200 mg, 0.31 mmol), NH₄PF₆ (74.8 mg, 0.459 mmol), and 20 mL of CH₂Cl₂. The solution was stirred at room temperature for 24 h. Then the solvent was removed under vacuum and the residue washed with 20 × 2 mL of hexane and 20 × 2 mL of ether to give the pale yellow product **10** (168.3 mg, 82% yield). ¹H NMR (CD₃COCD₃): δ 7.65–6.80 (m, 20 H, Ph), 5.27 (s, Cp), 4.77, 4.68 (dd, *J*_{H-H} = 17.65, CH₂) and 3.53 (d, 9 H, *J*_{H-P} = 10.87 Hz, P(OMe)₃). ³¹P NMR (CD₃COCD₃): δ 154.2 and 55.8 (2d, *J*_{P-P} = 61.1 Hz); MS (*m*/*z*, ¹⁰²Ru) 672.1 (M⁺), 553.1 (M⁺ – COCH₂Ph) and 429.1 (M⁺ – COCH₂Ph-P(OMe)₃).

X-Ray analysis of complex 3a

Single crystals of complex **3a** were grown as mentioned above. A single crystal was mounted on an Enraf-Nonius CAD4 diffractometer. Cell constant and other pertinent data are collected in Table 5. The NRCC structure determination package²¹ was used for crystallographic computations. Merging of equiv-

alent and duplicate reflections gave a total of 4954 unique data, from which 2517 were considered observed ($I > 2\sigma(I)$). The structure was solved by the heavy atom method then refined *via* standard least-squares and Fourier-difference techniques. The analytical forms of the scattering factor tables for the neutral atoms were used.²³ Final refinement converged smoothly to values of R = 0.043 and R' = 0.040. The procedures for the structure determination of **4**, **6**, and **10** were similar.

CCDC reference number 186/1698.

See http://www.rsc.org/suppdata/dt/1999/4223/ for crystallographic files in .cif format.

Acknowledgements

We are grateful for support of this work by the National Science Council, Taiwan, Republic of China.

References

- W. Beck, B. Niemer and M. Wieser, Angew. Chem., Int. Ed. Engl., 1993, 32, 923; L. S. Hegedus, in Organometallics in Synthesis, ed. M. Schlosser, Wiley, New York, 1994, p. 383; T. Bartik, B. Bartik, M. Brady, R. Dembinski and J. A. Gladysz, Angew. Chem., 1996, 3S 414; P. C. Ting, Y. C. Lin, G. H. Lee, M. C. Cheng and Y. Wang, J. Am. Chem. Soc., 1996, 118, 6433.
 L. K. Myers, C. Langhoff and M. B. Thompson, J. Am. Chem. Soc.,
- L. K. Myers, C. Langhoff and M. B. Thompson, J. Am. Chem. Soc., 1992, **114**, 7560; T. Kaharu, H. Matsubara and S. Takahashi, J. Mater. Chem., 1992, **2**, 43; O. Lavastre, M. Even, P. H. Dixneuf, A. Pacreau and J. P. Vairon, Organometallics, 1996, **15**, 1530; I. Y. Wu, J. T. Lin, J. Luo, S. S. Sun, C. S. Lee, K. J. Lin, C. Tsai, C. C. Hsu and J. L. Lin, Organometallics, 1997, **16**, 2038.
- 3 H. Hoberg and B. W. Oster, J. Organomet. Chem., 1983, 252, 359.
- 4 M. I. Bruce, T. W. Hambley, M. J. Leddell, M. R. Snow, A. G. Swincer and R. T. Tiekink, *Organometallics*, 1990, **9**, 96.
- 5 I. P. Selegue, J. Am. Chem. Soc., 1982, 104, 119.
- 6 A. Davison and J. P. Solar, *J. Organomet. Chem.*, 1979, 166, C13;
 M. I. Bruce, T. W. Hambley, M. R. Snow and A. G. Swincer, *Organometallics*, 1985, 4, 501.
- 7 P. Hong, K. Sonogashira and N. Hagihara, *J. Organomet. Chem.*, 1981, **219**, 363; A. G. M. Barrett, N. E. Carpenter, J. Mortier and M. Sabat, *Organometallics*, 1990, **9**, 151.
- 8 R. Criegee and K. Noll, *Leibigs Ann. Chem.*, 1959, **627**, 1; R. Criegee, D. Seebach, R. E. Winter, B. Borretzen and H. A. Brune, *Chem. Ber.*, 1965, **98**, 2339.
- 9 R. B. Woodward and R. Hoffmann, J. Am. Chem. Soc., 1965, 87, 4388.
- 10 J. I. Brauman and D. M. Golden, J. Am. Chem. Soc., 1968, 90, 1920.
- 11 J. Breulet and H. F. Schaefer, J. Am. Chem. Soc., 1984, 106, 1221.
- 12 F. Minzani, C. Pelizzi and G. Predieri, J. Organomet. Chem., 1982, 231, C6; M. I. Bruce, M. J. Liddell, M. R. Snow and E. R. T. Tiekink, Organometallics, 1988, 7, 343.
- 13 M. I. Bruce, D. N. Duffy, M. J. Liddell, M. R. Snow and R. T. Tiekink, Organometallics, 1992, 11, 1527.
- 14 M. I. Bruce, P. A. Humphrey, M. R. Snow, A. G. Swincer and R. T. Tiekink, J. Organomet. Chem., 1986, 303, 417.

- 15 C. W. Chang, Y. C. Lin, G. H. Lee, S. L. Huang and Y. Wang, Organometallics, 1998, 17, 2534.
 16 C. K. Johnson, ORTEP II, Report ORNL-5138, Oak Ridge
- National Laboratory, Oak Ridge, TN, 1976.
- 17 T. B. Brill and S. Landon, Chem. Rev., 1984, 84, 577; H. Nakazawa and K. Miyoshi, Trends Organomet. Chem., 1994, 1, 295.
- 18 A. G. Maki and R. A. Toth, J. Mol. Spectrosc., 1965, 17, 136.
- 19 D. L. Allen, V. G. Gibson, M. L. Green, T. F. Skinner, J. Bashikin and P. D. Grebenik, *J. Chem. Soc., Chem. Commun.*, 1985, 895; G. Consiglio and F. Morandini, *Chem. Rev.*, 1987, **87**, 761.
- 20 M. I. Bruce and A. G. Swincer, Aust. J. Chem., 1980, 33, 1471.
 21 K. Schulze, B. Schulze and C. Richter, Chem. Abstr., 1989, 111, 6889*d*.
- 22 E. J. Gabe, F. L. Lee and Y. Lepage, in *Crystallographic Computing* 3, eds. G. M. Sheldrick, C. Kruger and R. Goddard, Clarendon Press, Oxford, 1985, p. 167.
- 23 International Tables for X-ray Crystallography, Reidel, Dordrecht, Boston, 1974, vol. IV.

Paper 9/057881