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Abstract: N,N-3-Dibenzyloxycarbonylaminoazetidin-2-ones have been
conveniently prepared from N,N-dibenzyloxycarbonylglycyl chloride
and imines or hexahydrotriazines. The β-lactams thus obtained could be
monodeprotected by mild hydrogenolysis with Pd on carbon.

Penicillins, cephalosporins and other major β-lactam antibiotics are
characterized by the presence of a 3-aminoazetidin-2-one unit. Their
synthesis was performed either via Staudinger reaction1 or via the ester-
enolate imine route.2 In the former, in order to have a nitrogen bonded to
the C-3 position, azidoacetyl chloride (Bose reaction) or
phthalimidoacetyl chloride were the most utilized reagents, while in the
latter the enolate of 1-(ethoxycarbonylmethyl)-2,2,5,5-tetramethyl-1-
aza-2,5-disilacyclopentane (STABASE) was largely employed.

Recently, we reported a synthesis of the 3-amino-4-acetoxyazetidin-2-
one through a C-4 oxidation by ruthenium catalysts.3 We emphasized
the urgency to have a C-3 full protected nitrogen atom in order for the
C-4 oxidation to be successful. In this perspective, the phthalimido
group works well, but suffers by the need of a difficult cleavage.4 The
yield of this hydrolysis depends strongly on the substrate and, in
general, the conditions required are too drastic for azetidinones.

In connection with our ongoing interest in exploring new synthetic
routes for β-lactams, we now report an easy and convenient method,
starting from N,N-dibenzyloxycarbonylglycyl chloride, to prepare N,N-
3-dibenzyloxycarbonylaminoazetidin-2-ones and deprotect them under
mild conditions to the N-benzyloxycarbonylamino derivatives.

Scheme 1

The N,N-dibenzyloxycarbonylglycine 2 was obtained in a 60% overall
yield through alkylation of potassium dibenzyl iminodicarboxylate with
tert-butyl bromoacetate5 to give 1 and subsequent deprotection of tert-
butyl group with TiCl4 (1.5 eq., CH2Cl2, 0°C, 1 min).6 The new ketene
equivalent 3 was formed in situ by adding oxalyl chloride to the
corresponding glycine derivative 2 (1.5 eq., CH2Cl2, rt, 3h) (Scheme 1).
N,N-Dibenzyloxycarbonylglycyl chloride 3 in the presence of NEt3
reacts with imines7 or hexahydrotriazines affording β-lactams 4-8 and
10 in satisfactory yields.8

N-Allyl, N-benzyl, and N-p-methoxyphenylhexahydrotriazines were
previously treated with BF3•OEt2 in CH2Cl2 according to a modified
Kamiya procedure9 and then added at -40 °C to a dichloromethane
solution of 3 and Et3N to afford β-lactams 4-6 (Scheme 2). In this
approach, hexahydrotriazines served as a useful equivalent of the elusive

formaldehyde imines for the preparation of monocyclic 4-unsubstituted
β-lactams.10

Scheme 3

When the N,N-dibenzyloxycarbonylglycyl chloride 3 was treated with
imines, C4 substituted azetidinones 7-10 were obtained (Scheme 3). The
simple diastereoselectivity plays in favor of the cis isomer. The relative
cis/trans stereochemistry was unequivocally determined by 1H NMR
spectroscopy on the basis of the coupling constants (cis: J3,4 = 5.7-5.9
Hz and trans: J3,4 = 2.5-3.0 Hz). It is noteworthy that we preferentially
obtained cis azetidinones also with N-phenylbenzaldimine while it is
known that the reaction of phthalimidoacetyl chloride with the same
imine gives the corresponding trans β-lactam.11 The N-benzylimine of
(2S)-lactal 912 furnished, in this approach, the optically active cis
azetidinone 7 as a single isomer ([α]D

20 = +16.7, c = 0.936, CHCl3). The
stereochemistry of this product was determined by analogy with known
compounds.13 The total cis-syn asymmetric induction observed in this
case, is particularly noteworthy when compared with the trans-syn one
obtained with the STABASE enolate imine cycloaddition.13 This
stereochemical result implies that the natural (S)-C3 configuration could
be obtained starting from the easily available (2S)-lactal. 

Exposure of β-lactams 4, 7, 10 to H2 (1 atm) in THF at room
temperature in the presence of a catalytic amount of Pd (10% on C for
short reaction time or Lindlar catalyst) provided the corresponding
monobenzyloxycarbonylamino derivatives in almost quantitative yields
(Scheme 4).14

In conclusion, we have demonstrated that the N,N-
dibenzyloxycarbonylglycyl chloride constitutes a useful ketene
equivalent for the synthesis of C4-unsubstituted 3-aminoazetidin-2-ones
and cis C-4 substituted as well. The selective hydrogenolysis to mono

Scheme 2
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benzyloxycarbonylamino derivatives, largely employed as β-lactam
antibiotic intermediates, is mild and quantitative.
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