Positioning of transition metal centres at the upper rim of coneshaped calix[4]arenes. Filling the basket with an organometallic ruthenium unit

FULL PAPER

Manuel Lejeune,^a Catherine Jeunesse,^a Dominique Matt,^{*a} Nathalie Kyritsakas,^b Richard Welter and Jean-Pierre Kintzinger

- ^a Université Louis Pasteur, Laboratoire de Chimie Inorganique Moléculaire, UMR 7513, 1 rue Blaise Pascal, F-67008 Strasbourg Cedex, France. E-mail: dmatt@chimie.u-strasbg.fr
- ^b Université Louis Pasteur, Service de Cristallographie, 4 rue Blaise Pascal, F-67008 Strasbourg Cedex, France
- ^c Université Louis Pasteur, Laboratoire DECMET, Institut Le Bel, 4 rue Blaise Pascal, F-67000 Strasbourg Cedex, France
- d Université Louis Pasteur, Laboratoire de RMN de la matière condensée, Institut Le Bel, 4 rue Blaise Pascal, F-67070 Strasbourg Cedex, France

Received 27th November 2001, Accepted 26th February 2002 First published as an Advance Article on the web 18th March 2002

A series of calix[4]arenes bearing diphenylphosphino groups tethered at the upper rim have been prepared by treatment of 5,11,17,23-tetrabromo-25,26,27,28-tetrapropoxycalix[4]arene with ButLi (or ButLi) followed by reaction with PPh₂Cl. The tetraphosphinated derivative 3 was found suitable for the formation of tetranuclear species, notably $[3\cdot(AuCl)_4]$, $[3\cdot\{RuCl_2(p\text{-cymene})\}_4]$, and $[3\cdot\{PdCl(o\text{-}C_6H_4CH_2NMe_2)\}_4]$, all possessing an apparent C_{4v} -symmetry in solution. Reaction of [RuCl₂(p-cymene)], with the diphosphines 5,17-di-X-11,23-bis(diphenylphosphino)-25,26,27,28-tetrapropoxycalix[4]arene (X = H, 1; X = Br, 4) afforded the C_{2v} -symmetrical dinuclear complexes $[1 \cdot \{RuCl_2(p\text{-cymene})\}_2]$ and $[4 \cdot \{RuCl_2(p\text{-cymene})\}_2]$, respectively. Reaction of the non-brominated diphosphine 1 with $[PdCl(o-C_6H_4CH_2NMe_2)]_2$ gave the complex $[1\cdot\{PdCl(o-C_6H_4CH_2NMe_2)\}_2]$. Reaction at high dilution of [PtCl₂(1,5-cyclooctadiene)] with 4 or 1 resulted in quantitative formation of the corresponding cis-chelate complexes [4·PtCl₂] (12) and [1·PtCl₃] (13), respectively. The trans version of 13 could also be obtained, provided that [PtCl₂-(PhCN),] was used as starting complex. In the solid state, the PtCl, unit of 12 is directed towards one bromine atom, resulting in a highly unsymmetrical calixarene structure where the metal plane is nearly parallel to the calix reference plane. The NMR spectra of 12 and 13 show an apparent C_{2v} -symmetrical structure, suggesting a fast fan-like motion in solution of the metal plane about the $P \cdots P$ axis. Similar dynamics are likely to occur in the related cationic complexes [1·Rh(norbornadiene)]BF₄ (15) and [1·Pd(Me-allyl)]BF₄ (16). As shown by variable temperature studies carried out on 12 and 16, these dynamics couple with a concomitant, restricted rotation of the two PPh, units about their coordination axis. The latter motion is probably a result of steric interactions within the phosphorus environment, two PPh rings being in competition for occupation of the cavity entrance. Reaction of the expanded cavity 5,11,17-tribromo-23-diphenylphosphino-25,26,27,28-tetrapropoxycalix[4]arene 5 with [RuCl₂(p-cymene)]₂ afforded the monophosphine complex $[5 \cdot \text{RuCl}_2(p\text{-cymene})]$. In solution as well in the solid state, the p-cymene ligand fills the calixarene basket.

Calixarene-derived phosphine ligands have led to an extremely rich coordination chemistry. 1-4 One current development rests on the anticipation that the covalent linking of such a receptor to a transition metal centre could lead to supramolecular catalysts of industrial relevance. 4,5 As a first step to this goal we have recently synthesized a series of complexes in which a metal unit is fixed in a rigid manner near the upper rim of a calix-[4] arene kept in the so-called cone conformation. This has led to several metallo-cavitands where the metal first coordination sphere is partly sequestered inside the calixarene core.6 Structures of this type were first reported for the 5,17diphosphinated calix[4]arene 1, a ligand which readily forms chelate complexes having trans-arranged phosphorus atoms. Thus for example, we found that diphosphine 1 reacts with [RuCl₂(CO)₂]_n resulting in a calixarene that contains an entrapped Ru-C=O fragment. An X-ray study showed that the carbonyl nested inside the cavity is sandwiched between two facing phenol units separated by only 5.5 Å. Note, other calixcomplexes containing non-phosphorus complexing arene

units were recently used for the partial or total encapsulation of metal-bonded substrates.⁷⁻⁹ This topic has also been extended to metallo-cyclodextrins. 10

In the present study we report on the synthesis and coordinative properties of calixarenes containing one, two or four phosphino groups tethered at the upper rim of a calix[4]arene. The directed positioning of transition metal fragments at the cavity entrance is described for some of these ligands, including a monophosphine derivative which was shown to be suitable for hosting a (*p*-cymene)-ruthenium moiety. Furthermore, this work demonstrates, for the first time, that diphosphine 1 as well as a related ligand allow *cis*-chelation across the cavity, resulting in the formation of highly unsymmetrical calix[4]arenes. It should be mentioned that related upper-rim phosphinated calixarenes have been reported recently,^{5,11,12} but with none of them was entrapment of metal-organic fragments inside the cavity achieved. All calixarenes reported herein adopt a cone conformation. Conformational assignments were made using well-established rules based on ¹H and ¹³C NMR data.^{6,13,14}

Results and discussion

Introducing P(III) centres on the upper rim of calix[4]arenes

We recently reported a straightforward preparation of tetraphosphine 3 which is based on the following two steps: (i) introduction of four phosphoryl units by reaction of 2 with Ph₂POEt/NiBr₂ in refluxing benzonitrile; (ii) reduction of the thus formed phosphine oxide with PhSiH₃. 15,16 The phosphorylation step was inspired by a method originally developed by Tavs.¹⁷ We have now found that 3 may also be prepared in a convenient one-pot synthesis by stepwise addition to 2 of two equiv. of ButLi and two equiv. of Ph₂PCl, then by repeating this sequence after 10 h reaction time [eqn. (1)]. This one-pot procedure afforded 3 in 78% yield (after workup). Attempts to achieve a direct tetraphosphination using four equiv. of the reagents (ButLi, PPh2Cl) were not satisfactory, since these afforded a mixture of compounds in which only small amounts of 3 were present. Similar observations were recently made by Harvey et al. 18 It is likely that tetralithiation cannot take place due to steric congestion about the partially lithiated cone intermediate(s) formed once the first amounts of ButLi have been added. This situation contrasts with the results of Hamada 19 and Tsuji²⁰ who found that tetraphosphination using BuⁿLi/ PPh₂Cl can be achieved in one step when starting from conformationally non-rigid analogues of 2. However, in this case the end-product is a mixture of equilibrating conformers. The molecular structure of tetraphosphine 3 was reported in our preliminary work. 15 Consistent with our findings, the diphosphinated compound 4 could be prepared in good yields by reacting 2 with two equiv. of ButLi and two equiv. of PPh2Cl [eqn. (2)]. The NMR data of this compound are in full agreement with a C_{2v} -symmetrical molecule. The workup of the reaction required two recrystallisations in order to eliminate small quantities of a side product, namely monophosphine 5, formed in less than 5% yield. The synthesis of the latter could be improved up to 10% by performing the Br/Li exchange with BuⁿLi (one equiv.) instead of Bu^tLi. In this case no diphosphinated product was formed. In keeping with the presence of a mirror plane, the ¹H NMR spectrum of monophosphine 5 displays three patterns for the m-aryl-H of the calixarene moiety and two AB systems for the ArCH2 protons. Other valuable NMR data can be inferred from the Experimental section.

Complexation studies

Ligand 3 defines a complexation domain which, *a priori*, appears suitable for maintaining four discrete metal centres in close proximity, and indeed tetranuclear complexes could be synthesized from this tetraphosphine. Thus the three complexes 6, 7 and 8 were readily obtained by reacting 3 with [AuCl(THT)] (THT = tetrahydrothiophene), [RuCl₂(p-cymene)]₂ and [PdCl(p-C₆H₄CH₂NMe₂)]₂, respectively. They were characterized by 1 H, 13 C and 31 P NMR spectroscopy and elemental analysis (see the Experimental section). As deduced from the NMR spectra the calixarene units keep the apparent C_{4v} symmetry found in the free ligand, which actually corre-

sponds to a fast $C_{2v} \rightleftharpoons C_{2v}$ equilibrium.² The NMR spectra of complex **8** revealed that the four PdCl(o-C₆H₄CH₂NMe₂) moieties are equivalent, suggesting that despite the relative bulkiness of these fragments there is no rotational barrier about the P-Pd bond. This situation contrasts with that encountered in a related calix[4]arene complex in which four "PdCl(o-C₆H₄CH₂NMe₂)" moieties, connected to the *lower* rim via -CH₂PPh₂ ligands, do not move freely.²¹

Attempts to perform, with 3, the synthesis of complexes having a nuclearity smaller than four, for instance by addition of sub-stoichiometric amounts of ligand to a starting complex, only led to mixtures of products that could not be separated. On the other hand, diphosphines 1 and 4 could be used for the selective synthesis either of dinuclear or mononuclear complexes. For example, the dinuclear ruthenium complexes 9 and 10 were obtained in high yield from [RuCl₂(p-cymene)]₂, while complex 11 was quantitatively formed by reacting 1 with [PdCl(o-C₆H₄CH₂NMe₂)]₂. The NMR data of 9–11 are fully consistent with $C_{2\nu}$ -symmetrical structures. The suitability of 4 to form mononuclear complexes was first assessed towards Pt(II). Thus reaction of a 10^{-5} M dichloromethane solution of $[PtCl_2(COD)]$ (COD = 1,5-cyclooctadiene) or $[PtCl_2(PhCN)_2]$, with one equiv. of 4 afforded complex 12 in high yield [eqn. (3)]. When the reaction was not carried out at high dilution, oligomeric material was formed, eqn. (4) (see Experimental).

Typically for a monomer, the NMR spectra of complex 12 display sharp signals. The observed J(PPt) coupling constant of 3621 Hz is in agreement with cis-arranged phosphorus atoms. This stereochemistry was confirmed by an X-ray diffraction study. The cis configuration (PMP angle ca. 100°) results in a highly unsymmetrical calixarene structure (Fig. 1), with the PtCl₂ unit approaching one of the two brominated walls and the coordination plane being nearly parallel to the calix reference plane. The calixarene core of 12 is remarkably distorted, the interplane angle between the ArBr planes being ca. 115°; in comparison, the phenol rings bearing the phosphines are slightly bent toward the interior of the cavity (dihedral angle: 22°). In order to minimize steric interaction with the calixarene framework, the two phosphino groups do not occupy equivalent positions in the structure. Thus a single phenyl ring fills the cavity entrance, making the whole structure C_1 -symmetric in the solid state. Surprisingly, the ¹H and ¹³C NMR spectra of 12 reveal an apparent C_{2v} -symmetry, which of course is not

$$Ph_{2}P Ph_{2}P Ph_{2}$$

$$X Ph_{2}P Ph_{2}$$

$$Y Ph_$$

consistent with the solid state structure shown in Fig. 1. These observations suggest that a rapid fan-like motion of the metal plane about the PP axis takes place in solution, resulting in an averaged C_{2v} structure (Scheme 1). Interestingly, while the room temperature ³¹P NMR (202 MHz) spectrum of 12 displays an A_2X pattern [X = Pt, $J(P^{195}Pt) = 3621$ Hz], its signals broaden on lowering the temperature, coalesce at -40 °C, and finally split into a sharp ABX pattern $[J(PP') = 16 \text{ Hz}, J(P^{195}Pt) \approx 3530$ Hz, $J(P'^{195}Pt) \approx 3730$ Hz]. The same reduction of symmetry was also observed by ${}^{1}H$ NMR and is consistent with the C_{1} symmetry found in the solid state. A plausible explanation for these findings is that the two PPh2 units undergo a restricted (reversible) rotation about their coordination axis as shown in Scheme 2. This motion is likely to minimize steric interactions

CH₂Cl₂

oligomer(s)

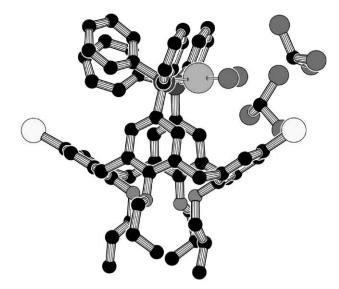
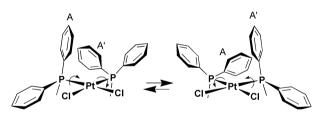



Fig. 1 Molecular structure of [PtCl₂·4] (12). The view also shows the two CHCl₃ solvates that lie close to the PtCl₂ unit.

Scheme 1 Proposed motion of the coordination plane in complexes 12, 15 and 16

Scheme 2 Restricted rotation of the PPh2 groups about the P-Pt bonds.

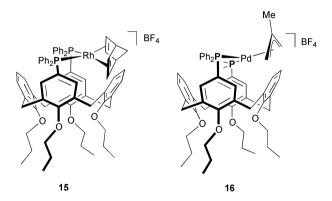
within the phosphorus environment, resulting in two PPh rings (A and A') that compete for occupation of the cavity entrance. The energy barrier 22 for this phenomenon is $\Delta G^{\neq} = 9.9$ kcal mol^{-1} .

It is noteworthy that the trans version of complex 12 could not be prepared, neither via a direct synthesis, nor by isomerization. Interestingly, with the related non-brominated ligand 1, both stereochemistries, cis and trans, could be obtained. The selective formation of 13 or 14 [eqns. (5) and (6)] was shown to depend on the starting complex, [PtCl2(COD)] yielding 13 and [PtCl₂(PhCN)₂] affording 14. Again these preparations had to be carried out at high dilution. The reason why diphosphine 4 selectively results in a cis instead of a trans isomer remains unclear. It is likely that after coordination of a first P(III) atom the bulky bromine atoms of 4 are pushed away from the metal centre, hence generating a highly flattened calixarene. This in turn produces a structure with a short P · · · P separation inappropriate for trans chelation. It is likely that bromine repulsion from the centre of the cavity is amplified by solvation effects. Note, in the solid state, **4** crystallizes with two CHCl₃ molecules that lie close to the PtCl₂ unit, each chloride ligand being associated to a single chloroform solvate (calculated Cl₃CH ··· ClPt separations: 2.78 Å and 2.69 Å, respectively).

$$[PtCl_{2}(COD)]$$

$$CH_{2}Cl_{2}, \text{ high dil.}$$

$$[PtCl_{2}(PhCN)_{2}]$$


$$CH_{2}Cl_{2}, \text{ high dil.}$$

$$[PtCl_{2}(PhCN)_{2}]$$

$$CH_{2}Cl_{2}, \text{ high dil.}$$

$$(5)$$

To extend our knowledge on the coordinative properties of 5,17-diphosphinated calixarenes, we also studied the reaction of diphosphine 1 with the cationic complexes [Rh(nbd)-(thf)₂]BF₄ and [Pd(η^3 -Me-allyl)(thf)₂]BF₄. These complexes possess very labile ligands, and are therefore expected to favor chelation over oligomer formation when reacted with diphosphines.²³ Indeed these reactions afforded quantitatively complexes 15 and 16, respectively. The two FAB mass spectra showed the peaks expected for the corresponding [M – BF₄]⁺ ions. As already observed for 12, the NMR data of 15 are in keeping with a $C_{2\nu}$ -symmetrical compound, suggesting the occurrence of dynamics that displace the rhodium(nbd) unit from one side of the calixarene to the other (Scheme 1).

For complex 16, the solid state structure of which is shown in Fig. 2, the interpretation of the NMR spectra is made more difficult owing to the presence of an allyl group. In this case the room temperature spectrum reveals an apparent C_s -symmetry which in fact is consistent both with a static structure as found in the solid state, as well as a fluxional structure in which the metal plane oscillates rapidly about the $P \cdots P$ axis, provided that there is no "allyl rotation". This latter point was confirmed by ROESY experiments. Hence we have no definitive answer to the question whether the metal plane moves as shown in Scheme 1, although this hypothesis seems very reasonable. It should be mentioned that the 2D ROESY spectrum does not

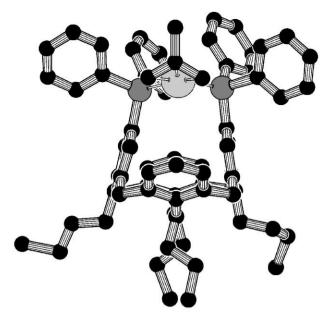


Fig. 2 Molecular structure of [Pd(Me-allyl)·1]BF₄ (16) (BF₄ anion and CHCl₃ solvate not shown).

display significant correlations between the Me(allyl) group and the aromatic H atoms of the calixarene skeleton. Thus, should a motion as shown in Scheme 1 occur, then the two exchanging isomers would probably be unequally populated. Finally, we noted that on lowering the temperature both the ³¹P and ¹H NMR spectra of **16** first broaden, then coalesce and eventually become sharp, the patterns being typically that of a C_1 -symmetrical calixarene (Fig. 3). These results are consistent

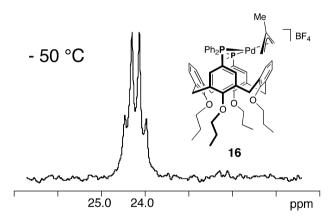
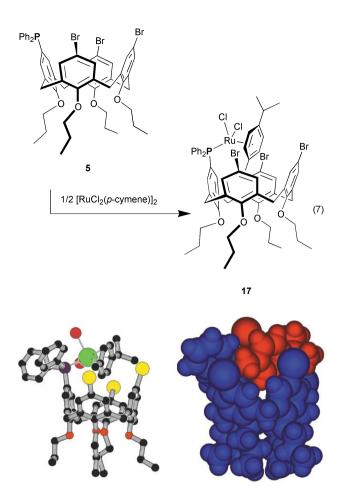



Fig. 3 Low temperature ³¹P NMR spectrum (CD₂Cl₂, 202 MHz) of complex 16.

with the PPh₂-dynamics already proposed for 12 in Scheme 2. The free enthalpy of activation is slightly higher than that found for 12 ($\Delta G^* = 11.2 \text{ kcal mol}^{-1}$).

The complexation properties of monophosphine 5 were also evaluated. Bearing three bromine substituents located at the upper rim, this calixarene may be regarded as an expanded calix[4]arene cavity. Its ability to nest an organometallic unit was checked using [RuCl₂(*p*-cymene)]₂. Reaction of this complex with 5 afforded 17 in 85% yield [eqn. (7)] which was characterized by a single crystal X-ray diffraction study.

As shown in Fig. 4, the Ru–P vector pointing towards the calixarene axis, and hence the "RuCl₂(*p*-cymene)" unit, sits within the four upper rim substituents (Br, Br, Br, P). Incidently, one end of the *p*-cymene ligand lies inside the deepened cavity. The partial encapsulation of the "RuCl₂(*p*-cymene)" moiety persists in solution, as deduced from the ¹H NMR spectrum which shows that the $MeC_6H_4Pr^i$ group as well as the neighbouring *ortho*-protons, both apically sited above two facing

Fig. 4 Molecular structure of complex **17**: left, ball and stick representation; right, CPK model showing the enveloped "RuCl₂(*p*-cymene)" unit in red (CH₂Cl₂ and hexane solvates are not shown).

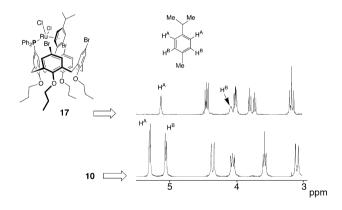


Fig. 5 $\,^{1}\mathrm{H}$ NMR spectra (CDCl3, partial view) of the ruthenium complexes 10 and 17.

phenoxy rings, have undergone a highfield shift of *ca.* 1 ppm (!) when compared to the values found in **7**, **9** and **10** (Fig. 5). In contrast, the *meta-H* atoms and the Prⁱ protons have normal chemical shifts (see Experimental), suggesting that the *p*-cymene ring undergoes restricted rotation about its coordination axis as shown in Scheme 3.

Scheme 3 Restricted rotation of the *p*-cymene unit about its coordination axis.

In the solid state, the Ar–Me bond of the p-cymene ligand is oriented sideways, pointing towards a bromine atom, thus probably minimizing steric interaction between the Ar–Me group and the two phenol rings that sandwich the p-cymene ring. Interestingly, in the related complex 18 where the calix cone is shorter, the coordinated RhCp*Cl₂ unit (Cp* = C₅Me₅) lies completely outside the cavity. It is likely that for steric reasons the PPh rings of the bulky ligand 5 are oriented outwards, resulting in a phosphorus lone pair that points to the calix axis and which in turn forces metal complexation to occur at the cavity entrance. Overall the entrapment of the p-cymene unit may be regarded as a mechanical imprisonment within enlarged calixarene walls.

Conclusions

We have described a synthetic methodology that allows single or multiple phosphination at the upper-rim of calix[4]arenes. Multiple complexation was achieved with the di- and tetraphosphinated ligands resulting in complexes where the metal units are all maintained close to the upper rim. When behaving as chelators the 5,17-diphosphinated ligands 1 and 4 position the complexed metal centre exactly at the cone entrance. The fact that 1 and 4 may act as *cis*-chelators is rather unexpected in view of the high asymmetry generated in the resulting structures. Their dynamic behaviour in solution is probably a response to the steric strain induced in these calixarenes.

The most interesting feature of the "expanded" cavity 5 concerns the possibility to realize partial entrapment of coordinated metal units. Future work is aimed at exploiting this property for catalytic processes occurring inside a spatially-restricted environment.

Experimental

All manipulations involving phosphines were performed in Schlenk-type flasks under dry nitrogen. Solvents were dried by conventional methods and distilled immediately prior to use. CDCl₃ was passed down a 5 cm-thick alumina column and stored under nitrogen over molecular sieves (4 Å). Routine ¹H and ³¹P{¹H} spectra were recorded with FT Bruker instruments (AC-300 or Bruker AM-400). ¹³C{¹H} were recorded with an FT Bruker AC-200 spectrometer. ¹H NMR spectra were referenced to residual protio solvents (7.26 ppm for CDCl₃ and 5.32 ppm for CD₂Cl₂), ¹³C chemical shifts are reported relative to deuterated solvents (77.0 ppm for CDCl₃ and 53.8 ppm for CD₂Cl₂), and the ³¹P NMR data are given relative to external H₃PO₄. Mass spectra were recorded on a ZAB HF VG analytical spectrometer using m-nitrobenzyl alcohol as matrix. ButLi and ButLi solutions were titrated according to a conventional method.²⁴ 5,11,17,23-Tetrabromo-25,26,27,28-tetrapropoxycalix[4]arene (2),²⁵ [AuCl(THT)],²⁶ [Pd(o-C₆-H₄CH₂NMe₂)Cl]₂,²⁷ [RuCl₂(p-cymene)]₂,²⁸ [PtCl₂(COD)],²⁹ [PtCl₂(PhCN)₂],³⁰ [RhCl(norbornadiene)]₂,³¹ [Pd(η³-C₄H₇)Cl]₂,³² were prepared according to methods reported in the literature. In the NMR data "C_q" denotes a quaternary carbon atom. In the following "dmba" stands for the *o*-C₆H₄CH₂NMe₂ ligand.

Syntheses

5,17-Bis(diphenylphosphino)-25,26,27,28-tetrapropoxycalix-[4] arene 1. To a cold (-78 °C) solution of 2 (2.169 g, 2.38 mmol) in THF (50 cm³) was added a 1.72 M solution of ButLi-pentane (2.8 cm³, 4.8 mmol). After 1 h, Ph₂PCl (0.8 cm³, 1.053 g, 4.76 mmol) was added dropwise and the solution was stirred for 10 h at -78 °C. The lithiation step was then repeated using the same amounts of ButLi. The reaction was quenched with MeOH (3 cm³). The solution was allowed to warm up to room temperature, evaporated to dryness and the residue was taken up with CH2Cl2. Addition of EtOH afforded a white precipitate. Yield: 1.875 g, 82%. mp > 280 °C. ¹H NMR (CDCl₃): δ 7.37–7.33 (20H, PPh₂), 7.06 [d, 4H, m-H of OArP, $^{3}J(PH) = 8 \text{ Hz}$], 6.29 and 6.11 (AB₂ spin system, 6H, m and p-H of OAr, ${}^{3}J = 8$ Hz), 4.41 and 3.06 [2d, AB spin sytem, 8H, $ArCH_2Ar$, ${}^2J(AB) = 13.0 Hz$], 4.03 (pseudo t, 4H, OCH₂, ${}^3J \approx 8$ Hz), 3.63 (t, 4H, OCH₂, ${}^{3}J = 8$ Hz), 2.00 (m, 4H, OCH₂CH₂), 1.81 (m, 4H, OCH₂CH₂), 1.06 (t, 6H, CH₃, ${}^{3}J$ = 7.5 Hz), 0.91 (t, 6H, CH₃, ${}^{3}J = 7.5$ Hz). ${}^{13}C\{{}^{1}H\}$ NMR (CDCl₃): δ 159.80 and 155.10 (2s, arom. C_q –O), 137.25–122.02 (arom. C's), 77.00 and 76.60 (2s, OCH₂), 30.95 (s, Ar CH_2 Ar), 23.51 and 23.15 (2s, CH₂CH₃), 10.82 and 9.93 (2s, CH₃). ³¹P{¹H} NMR (CDCl₃): $\delta - 6.4$ (s, PPh₂). Found: C, 80.18; H, 6.74. Calc. for C₆₄H₆₆O₄P₂ $(M_r = 961.18)$ C, 79.98; H, 6.92%.

5,11,17,23-Tetrakis(diphenylphosphino)-25,26,27,28-tetrapropoxycalix[4]arene 3. To a cold (-78 °C) solution of 2 (2.169 g, 2.38 mmol) in THF (50 cm³) was added a 1.72 M solution of ButLi-pentane (3.0 cm³, 4.8 mmol). After 1 h, Ph₂PCl (0.8 cm³, 1.053 g, 4.76 mmol) was added and the solution was stirred for 10 h at -78 °C. This lithiation/ phosphination step was then repeated using the same amounts of ButLi and Ph2PCl. The solution was warmed up to room temperature, evaporated to dryness and the residue was taken up with CH₂Cl₂. Addition of EtOH afforded a white precipitate. Yield: 2.468 g, 78 %. mp > 280 °C. ¹H NMR (CDCl₃): δ 7.28–7.23 and 7.07–7.02 (40H, PPh₂), 6.74 [d, 8H, m-H of OArP, ${}^{3}J(PH) = 7.9 \text{ Hz}$], 4.41 and 3.05 [2d, AB spin system, 8H, $ArCH_2Ar$, ${}^2J(AB) = 13.0 Hz$], 3.87 (t, 8H, OCH₂, ${}^3J = 8.0 Hz$), 1.95 (m, 8H, OCH₂CH₂), 0.98 (t, 12H, CH₃, ${}^{3}J = 7.5$ Hz). $^{13}C\{^{1}H\}$ NMR (CDCl₃): δ 159.48 (s, arom. C_q-O), 135.03-124.73 (arom. C's), 76.47 (s, OCH₂), 31.31 (s, ArCH₂Ar), 23.15 (s, CH_2CH_3), 10.15 (s, CH_3). $^{31}P\{^1H\}$ NMR (CDCl₃): δ -6.0 (s, PPh₂). Found: C,79.41; H, 6.53. Calc. for $C_{88}H_{84}O_4P_4$ $(M_r = 1329.54)$ C, 79.50; H, 6.37%.

5,17-Dibromo-11,23-bis(diphenylphosphino)-25,26,27,28tetrapropoxycalix[4]arene 4. To a solution of 2 (10.080 g, 11.1 mmol) in THF (50 cm³) at -78 °C was added dropwise a 1.72 M solution of ButLi-pentane (12.9 cm³, 22.2 mmol). After 1 h, Ph₂PCl (3.8 cm³, 22.2 mmol) was added and the solution was stirred for a further 10 h at -78 °C. The solvent was evaporated and the residue was taken up with CHCl3. Addition of MeOH afforded a white precipitate. Yield: 7.9 g, 63%. mp 256 °C. ¹H NMR (CDCl₃): δ 7.51–7.37 (20H, PPh₂), 7.12 [d, 4H, m-H of OArP, ${}^{3}J(PH) = 7.5 \text{ Hz}$], 6.37 (s, 4H, m-H of OArBr), 4.40 and 3.07 [2d, AB spin system, 8H, ArC H_2 Ar, ${}^2J(AB) = 13.3$ Hz], 4.07 (t, OCH₂, ${}^{3}J = 8.0$ Hz), 3.62 (t, 4H, OCH₂, ${}^{3}J = 6.7$ Hz), 1.99 (m, 4H, OCH₂CH₂), 1.85 (m, 4H, OCH₂CH₂), 1.08 (t, 6H, CH₃, 3J = 7.5 Hz), 0.92 (t, 6H, CH₃, 3J = 7.4 Hz). 13 C{ 1 H} NMR (CDCl₃): δ 158.40 and 154.27 (2s, C_q-O), 138.10–128.58 (arom. C's), 115.38 (s, CBr), 77.35 and 76.74 (2s, OCH₂), 30.85 (s, ArCH₂Ar), 23.43 and 23.08 (2s, CH₂CH₃), 10.77 and 9.79 (2s, CH₃). ${}^{31}P\{{}^{1}H\}$ NMR (CDCl₃): δ -6.6 (s, PPh₂). Found: C, 68.45; H, 5.78. Calc. for $C_{64}H_{64}Br_2O_4P_2$ ($M_r = 1118.98$) C, 68.70; H, 5.77%.

5,11,17-Tribromo-23-diphenylphosphino-25,26,27,28-tetra-propoxycalix[4]arene 5. To a solution of **2** (5.010 g, 5.51 mmol) in THF (150 cm 3 , -78 °C) was slowly added a 1.5 M solution

of BuⁿLi-hexane (4.0 cm³, 6.1 mmol). After 1 h, neat Ph₂PCl (1.0 cm³, 5.5 mmol) was added and the solution was maintained at -78 °C for 10 h. The solution was then stirred for a further 5 h at room temperature. The solvent was removed and the residue was taken up with CH2Cl2. Addition of MeOH afforded a white precipitate which was purified by column chromatography ($R_f = 0.3$, SiO₂, CH₂Cl₂-hexane 80 : 20 v/v). Yield: 0.498 g, 10%. ¹H NMR (CDCl₃): δ 7.42–7.26 (m, 10H, PPh₂), 7.13 (s, 2H, m-H of OArBr), 6.90 [d, 2H, m-H of OArP, ³J(PH) = 7.3 Hz], 6.62 and 6.53 [2d, AB spin system, 4H, m-H of OArBr, ${}^{4}J(AB) = 2.7 \text{ Hz}$], 4.40 and 3.11 [2d, AB spin system, 4H, ArCH₂Ar, ${}^{2}J(AB) = 13.8$ Hz], 4.39 and 3.07 [2d, AB spin system, 4H, ArCH₂Ar, ${}^{2}J(AB) = 13.9$ Hz], 3.99–3.92 (2 overlapped m, 6H, OCH₂ of OArP), 3.77-3.72 (2 overlapped t, 6H, OCH₂ of OArBr), 1.95–1.87 (m, 8H, OCH₂CH₂), 1.05, 0.97 and 0.95 (3 overlapped t, 12H, CH₃). ¹³C{¹H} NMR (CDCl₃): δ 158.69, 157.11 and 155.80 (3s, arom. C_q –O), 138.58–129.45 (arom. C's), 116.27 and 115.88 (2s, arom. C_0 –Br), 78.11 (3 ×) and 77.75 (2s, OCH₂), 31.70 (s, ArCH₂Ar), 24.16 and 23.83 (2s, CH₂CH₃), 11.44, 10.98 and 10.88 (3s, CH₃). ³¹P{¹H} NMR (CDCl₃): δ -6.2 (s, PPh₂). Found: C, 61.47; H, 5.66. Calc. for $C_{52}H_{54}Br_3O_4P$ ($M_r = 1013.67$) C, 61.61; H, 5.37%.

Tetrachloro {5,11,17,23-tetra(diphenylphosphino)-25,26,27,28-tetrapropoxycalix[4]arene}gold(t) 6. A solution of [AuCl(tht)] (0.097 g, 0.30 mmol) in THF (1 cm³) was added to a solution of 3 (0.100 g, 0.08 mmol) in CH₂Cl₂ (15 cm³). After stirring for 2 h the solution was filtered over Celite and the filtrate was concentrated to *ca.* 1 cm³. Addition of hexane afforded the complex as a white powder. Yield: 0.120 g, 75%. mp 242–245 °C (dec.). ¹H NMR (CDCl₃): δ 7.62–7.55 and 7.45–7.37 (24H, PPh₂), 7.15, 7.11 and 7.00 (3d, 24H, arom. H's PPh₂ and calix), 4.51 and 3.20 [AB spin sytem, 8H, ArC H_2 Ar, 2J (AB) = 13 Hz], 3.99 (t, 8H, OCH₂, 3J = 8 Hz), 1.98 (m, 8H, OCH₂C H_2), 1.02 (t, 12H, CH₃, 3J = 7.5 Hz). 13 C{ 1 H} NMR (CDCl₃): δ 159.45 (s, arom. C_q–O), 135.62–121.43 (arom. C's), 77.59 (s, OCH₂), 31.53 (s, ArCH₂Ar), 23.20 (s, CH₂CH₃), 10.23 (s, CH₃). 31 P{ 1 H} NMR (CDCl₃): δ 31.12 (s, PPh₂). Found: C, 48.68; H, 3.95. Calc. for C₈₈H₈₄Cl₄O₄P₄Au₄·C₆H₁₄ (M_r = 2259.22 + 86.17) C, 48.14; H, 4.21%. This complex slowly decomposes in solution.

Tetra(dichloro)tetra(η^6 -p-cymene)[5,11,23,17-tetra(diphenylphosphino)-25,26,27,28-tetrapropoxycalix[4]arene]tetraruthenium(II) 7. A solution of [RuCl₂(p-cymene)]₂ (0.050 g, 0.084 mmol) in CH₂Cl₂ (10 ml) was added to a solution of tetraphosphine 3 (0.056 g, 0.042 mmol) in CH₂Cl₂ (30 ml). After stirring for one night, the solution was evaporated to dryness and the residue was taken-up with CHCl₃. Addition of Et₂O afforded an orange precipitate. Yield: 0.076 g, 81%. mp 236 °C. ¹H NMR (300 MHz, 298 K, CDCl₃): δ 7.49–7.00 (m, 48H, PPh₂ and m-H of calixarene), 5.29 and 5.05 [2d, AA'BB' spin system, 16H, C_6H_4 of p-cymene ${}^3J(AB) = {}^3J(A'B') = 6.0$ Hz], 4.48 and 3.19 [2d, AB spin system, 8H, ArC H_2 Ar, 2J (AB) = 12.9 Hz], 3.97 (t, 8H, OCH₂ of OArP, ${}^{3}J = 6.7$ Hz), 2.6 [m, 4H, $CH(CH_3)_2$], 1.85 (m, 8H, OCH_2CH_2), 1.00 [d, 6H, $CH(CH_3)_2$, $^{3}J = 6.7 \text{ Hz}$], 0.91 (t, 12H, CH₃, $^{3}J = 7 \text{ Hz}$). $^{31}P\{^{1}H\}$ NMR (121 MHz, 298 K, CDCl₃): δ 21.7 (s, PPh₂). Found: C, 59.93; H, 5.48. Calc. for $C_{128}H_{140}Cl_8O_4P_4Ru_4$ ($M_r = 2554.33$): C, 60.19; H, 5.52%.

Tetrachloro-tetra(N,N-dimethylaminobenzylamine){5,11,17, 23-tetra(diphenylphosphino)-25,26,27,28-tetrapropoxycalix[4]-arene}tetrapalladium(Π) 8. A solution of [Pd(o-C₆H₄NMe₂)Cl]₂ (0.067 g, 0.12 mmol) in THF (1 cm³) was added to a solution of the tetraphosphine 3 (0.080 g, 0.06 mmol) in CH₂Cl₂ (15 cm³). After stirring for 2 h the solution was filtered over Celite and the filtrate was concentrated to ca. 1 cm³. Addition of pentane afforded the complex as a white precipitate. Yield: 0.120 g, 77%. mp 208–212 °C (dec.). ¹H NMR (CDCl₃): δ 7.43–7.20 (48H,

m-H of OAr and PPh₂), 6.25 and 5.97 (16H, arom H of dmba), 4.24 and 2.79 [AB spin sytem, 8H, ArC H_2 Ar, 2J (AB) = 13 Hz], 3.91(s, 8H, NC H_2 of dmba), 3.81 (t, 8H, OCH₂, 3J = 7.8 Hz), 2.64 (d, 24H, NC H_3 of dmba, J = 2.1 Hz), 1.74 (m, 8H, OCH₂C H_2), 0.87 (t, 12H, CH₃, 3J = 7.3 Hz). 13 C{ 1 H} NMR (CDCl₃): δ 158.24 (s, arom. C_q–O), 152.32 and 148.44 (2s, C_q of dmba), 137.88–122.17 (arom. C's), 76.44 (s, OCH₂), 73.33 (s, NCH₂ of dmba), 50.39 (s, NCH₃ of dmba), 32.14 (s, ArCH₂Ar), 22.78 (s, CH₂CH₃), 10.24 (s, CH₃). 13 P{ 1 H} NMR (CDCl₃): δ 40.27 (s, PPh₂). Found: C, 61.68; H, 5.46; N, 2.26. Calc. for C₁₂₄H₁₃₂Cl₄N₄O₄P₄Pd₄ (M_r = 2575.58): C, 61.20; H, 5.47; N, 2.30%.

Bis(dichloro)bis(η⁶-p-cymene)[5,17-bis(diphenylphosphino)-25,26,27,28-tetrapropoxycalix[4]arene]diruthenium(II) solution of [RuCl₂(p-cymene)], (0.096 g, 0.16 mmol) in CH₂Cl₂ (10 cm³) was added to a solution of diphosphine 1 (0.150 g, 0.16 mmol) in CH₂Cl₂ (30 cm³). After stirring for 1 h the solution was concentrated to ca. 5 cm³ and addition of diethyl ether afforded an analytically pure orange powder. Yield: 0.165 g, 67%. mp 192–194 °C. 1 H NMR (CD₂Cl₂): δ 7.97–7.87 and 7.43– 7.40 (m, 20H, PPh₂), 7.58 [d, 4H, m-ArH of OArP, ${}^{3}J(PH) =$ 10.4 Hz], 6.20 and 5.98 (d and t, AB₂ spin system, m-H and p-H of OAr, ${}^{3}J = 7.5 \text{ Hz}$), 5.25 and 5.11 [2d, AA'BB' spin system, 8H, C_6H_4 of p-cymene ${}^3J(AB) = {}^3J(A'B') = 5.3$ Hz], 4.37 and 3.08 (2d, AB spin system, 8H, ArCH₂, $^2J = 13.2$ Hz), 4.05 (t, 4H, OCH₂ of OArP, ${}^{3}J = 6.9 \text{ Hz}$), 3.57 (t, 4H, OCH₂ of OArBr, ${}^{3}J =$ 6.7 Hz), 2.85 [hept., 2H, CH(CH₃)₂ of p-cymene], 1.95 (s, 6H, p-Me of p-cymene), 2.00-1.75 (2m, 8H, OCH₂CH₂), 1.13 [d, 6H, $CH(CH_3)_2$, ${}^3J = 6.9$ Hz], 1.06 and 0.89 (2t, 12H, CH_3 , ${}^3J = 7.6$ Hz). 13 C{ 1 H} NMR (CDCl₃): δ 160.09 and 154.94 (2s, arom. C_q-O), 136.89–122.25 (arom. C's), 110.50 and 95.89 (2s, arom. C_q^3 's of *p*-cymene), 89.35 and 86.91 (2s, arom. CH of *p*-cymene), 77.70 and 77.07 (2s, OCH₂), 30.98 (s, Ar*C*H₂Ar), 30.32 (s, CH(CH₃)₂), 23.51 and 23.18 (2s, CH₂CH₃), 17.86 (s, ArCH₃ of p-cymene), 10.88 and 9.85 (2s, CH₃). ³¹P{¹H} NMR (CDCl₃): δ 22.99 (s, PPh₂). Found: C, 64.14; H 6.23. Calc. for $C_{84}H_{94}Cl_4O_4P_2Ru_2$ ($M_r = 1573.58$): C, 64.12; H, 6.02%.

Bis(dichloro)bis(η⁶-p-cymene)[5,17-(dibromo)-11,23-bis-(diphenylphosphino)-25,26,27,28-tetrapropoxycalix[4]arene]diruthenium(II) 10. A solution of [RuCl₂(p-cymene)]₂ (0.030 g, 0.05 mmol) in CH₂Cl₂ (10 cm³) was added to a solution of diphosphine 4 (0.056 g, 0.05 mmol) in CH₂Cl₂ (30 cm³). After stirring for one night the solution was concentrated to ca. 5 cm³. Addition of diethyl ether afforded an analytically pure orange powder. Yield: 0.081g, 90 %. mp 226-230 °C. ¹H NMR (CDCl₃): δ 7.95–7.89 and 7.50–7.41 (m, 20H, PPh₂), 7.55 [d, 4H, m-ArH of OArP, ${}^{3}J(PH) = 10.0$ Hz], 6.24 (s, 4H, m-H of OArBr), 5.29 and 5.05 [2d, AA'BB' spin system, 8H, C₆H₄ of *p*-cymene ${}^{3}J(AB) = {}^{3}J(A'B') = 6.0 \text{ Hz}$, 4.33 and 3.06 [2d, AB] spin system, 8H, ArC H_2 Ar, ${}^2J(AB) = 13.4$ Hz], 4.04 (t, 4H, OCH₂ of OArP, ${}^{3}J = 8.3 \text{ Hz}$), 3.56 (t, 4H, OCH₂ of OArBr, ${}^{3}J =$ 6.7 Hz), 2.9 [m, 2H, CH(CH₃)₂ of p-cymene], 1.97 (s, 6H, p-Me of p-cymene), 1.95 and 1.80 (2m, 8H, OCH₂CH₂), 1.14 [d, 6H, $CH(CH_3)_2$, ${}^3J = 6.6$ Hz], 1.05 and 0.88 (2t, 12H, CH_3 , ${}^3J = 7.3$ Hz). $^{13}C\{^{1}H\}$ NMR (CDCl₃): δ 160.45 and 155.08 (2s, arom. C_q -O), 136.72–129.21 (arom. C's), 116.20 (s, arom. C_q -Br), 112.04 and 97.06 (2s, arom. C_q's of *p*-cymene), 89.65 and 88.47 (2s, arom. CH of p-cymene), 78.29 and 77.65 (2s, OCH₂), 31.82 [s, $CH(CH_3)_2$], 31.27 (s, $ArCH_2Ar$), 24.29 and 22.9 (2s, CH₂CH₃), 19.01 (s, ArCH₃ of p-cymene), 11.73 and 10.65 (2s, CH₃). ${}^{31}P\{{}^{1}H\}$ NMR (CDCl₃): δ 24.08 (s, PPh₂). Found: C, 58.04; H, 5.00. Calc. for $C_{84}H_{92}Br_2Cl_4O_4P_2Ru_2$ ($M_r = 1731.37$): C, 58.27; H, 5.36%.

Dichloro-bis(N,N-dimethylaminobenzylamine){5,17-bis-(diphenylphosphino)-25,26,27,28-tetrapropoxycalix[4]arene}-dipalladium(II) 11. A solution of [Pd(o-C₆H₄NMe₂)Cl]₂ (0.075 g, 0.13 mmol) in CH₂Cl₂ (5 cm³) was added to a solution of

diphosphine 1 (0.130 g, 0.13 mmol) in CH₂Cl₂ (20 cm³). After stirring for 1 h the solution was concentrated to ca. 1 cm³. Addition of hexane afforded complex 11 as a white precipitate. Yield: 0.150 g, 75%. mp 220–222 °C. 1 H NMR (CDCl₃): δ 7.81– 7.7 and 7.45–7.37 (20H, PPh₂), 7.61 [d, 4H, m-ArH of OArP, $^{3}J(PH) = 11.6 \text{ Hz}$, 7.07–6.92 and 6.65–6.49 (8H, arom H of dmba), 6.05 and 5.64 (d and t, AB₂ spin system, 6H m-H and p-H of OAr, ${}^{3}J = 7.6$ Hz), 4.39 and 3.04 [AB spin sytem, 8H, ArC H_2 Ar, 2J (AB) = 13.4 Hz], 4.05 (t, 4H, OC H_2 , 3J = 7.5 Hz), 4.04 [d, 4H, NC H_2 of dmba, 4J (PH) = 2 Hz], 3.57 (t, 4H, OC H_2) $^{3}J = 6.6 \text{ Hz}$), 2.90 (d, 12H, NC H_{3} of dmba, $^{4}J = 2.4 \text{ Hz}$), 2.02– 1.77 (m, 8H, OCH₂CH₂), 1.08 and 0.93 (2t, 12H, CH₃, ${}^{3}J = 7.3$ Hz). ${}^{13}C\{{}^{1}H\}$ NMR (CDCl₂): δ 160.51 and 154.91 (2s, arom. C_q -O), 151.4 and 148.1 (2s, C_q of dmba), 136.37–122.42 (arom. C's), 77.35 and 76.50 (2s, OCH₂), 73.25 (s, NCH₂), 50.52 (s, NCH₃), 31.00 (s, ArCH₂Ar), 23.55 and 23.18 (2s, CH₂CH₃), 10.85 and 9.86 (2s, CH₃). ³¹P{¹H} NMR (CDCl₃): δ 42.62 (s, PPh₂). Found: C, 65.77; H, 5.68. Calc. for C₈₂H₉₀Cl₂N₂O₄P₂Pd₂ $(M_r = 1513.30)$: C, 65.08; H, 5.68%.

cis-P,P'-Dichloro{5,17-dibromo-11,23-bis(diphenylphosphino)-25,26,27,28-tetrapropoxycalix[4]arene}platinum(II) 12. A solution of diphosphine 4 (0.167 g, 0.15 mmol) in CH₂Cl₂ (250 cm³) and a solution of [PtCl₂(COD)] (0.056 g, 0.15 mmol) in CH₂Cl₂ (250 cm³) were added simultaneously into a 2 L flask containing 750 cm³ of CH₂Cl₂ over a period of 4 h. The resulting solution was stirred overnight at room temperature. The solution was concentrated to ca. 5 cm³. Addition of toluene afforded a white precipitate. Yield: 0.183 g, 90%. mp > 280 °C. ¹H NMR (CDCl₃): consistent with the formation of a monomer, all signals are sharp: δ 7.28–7.03 (m, 24 H, PPh, and m-H of OArP), 6.91 (broad s, 4H, m-H of OArBr), 4.49 and 3.21 [2d, AB spin system, 8H, $ArCH_2 Ar$, ${}^3J(AB) = 13.7 Hz$], 4.08 (t, 4H, OCH, of OArP, ${}^{3}J = 8.1 \text{ Hz}$), 3.80 (t, 4H, OCH, of OArBr, ${}^{3}J =$ 6.3 Hz), 1.95–1.88 (m, 8H, OCH₂ CH₂), 1.16 and 0.89 (2t, 12H, CH₃, ${}^{3}J = 7.0 \text{ Hz}$). ${}^{13}\text{C}\{{}^{1}\text{H}\}$ NMR (CDCl₃): δ 157.87 and 156.56 (2s, arom. C_q -O), 138.40–125.36 (arom. C's), 116.32 (s, arom. C_q -Br), 77.42 and 77.08 (2s, OCH₂), 31.13 (s, ArCH₂Ar), 23.63 and 22.78 (2s, CH₂CH₃), 10.89 and 9.77 (2s, CH₃). ³¹P{¹H} (CDCl₃): δ 11.2 [s with Pt satellites, PPh₂, J(PPt) = 3621 Hz]. FAB mass spectrum: m/z (%) 1349.2 (100) [M - C1]⁺, 1313.1 (62) [M - 2Cl]⁺. Found: C, 54.29; H, 4.82. Calc. for $C_{64}H_{64}Br_2Cl_2O_4P_2Pt \cdot 0.5CH_2Cl_2$ ($M_r = 1384.97 + 42.47$): $C_r = 1384.97 + 42.47$ 54.27; H, 4.59%.

Oligomer [PtCl₂·4]_n. A solution of [PtCl₂(COD)] (0.078 g, 0.20 mmol) in CH₂Cl₂ (5 cm³) was added to a stirred solution of 4 (0.220 g, 0.20 mmol) in CH₂Cl₂ (5 cm³). After stirring overnight, the solution was concentrated to ca. 2 cm³ and addition of diethyl ether afforded a white precipitate. Yield: 0.195 g, 95%. mp > 280 °C. 1 H NMR (400 MHz, 388 K, $C_{2}D_{2}Cl_{4}$): the following signals are typically broad for an oligomer: δ 7.70– 7.65 and 7.45–7.38 (2m, 24H, PPh₂ and m-H of OArP), 6.14 (s, 4H, m-H of OArBr), 4.37 and 3.03 [2d, AB spin system, 8H, $ArCH_2Ar$, ${}^2J(AB) = 13.4 Hz$, 4.12 (t, 4H, OCH₂ of OArP, ${}^3J =$ 7.1 Hz), 3.68 (t, 4H, OCH₂ of OArBr, $^{3}J = 5.6$ Hz), 1.93–1.85 (m, 8H, OC H_2 CH₂), 1.12 and 0.95 (2t, 12H, CH₃, ${}^3J = 7.3$ Hz). 13 C{ 1 H} NMR (CD₂Cl₂): δ 160.87 and 154.86 (2s, arom. C_q–O), 136.86-128.66 (arom. C's), 115.61 (s, arom. C_q -Br), 77.98 and 77.31 (2s, OCH₂), 31.26 (s, ArCH₂Ar), 23.83 and 23.52 (2s, CH_2CH_3), 11.09 and 9.95 (2s, CH_3). ${}^{31}P\{{}^{1}H\}NMR$ (CDCl₃): δ 13.7 [s with Pt satellites, PPh₂, J(PPt) = 3660 Hz]. Molecular weight determination by osmometry (CH₂Cl₂): 14000 ± 90 , corresponding to a formal value of n = 10. FAB mass spectrum: m/z (%) 1349.5 (10) [M - Cl], 1312.7 (100) [M - 2Cl]. Found: C, 55.60; H, 4.41. Calc. for $[C_{64}H_{64}Br_2Cl_2O_4P_2Pt]_n$ $(M_r = n \times 10^{-6})$ 1384.97): C, 55.60; H, 4.66%.

cis-P,P'-Dichloro{5,17-bis(diphenylphosphino)-25,26,27,28-tetrapropoxycalix[4]arene}platinum(II) 13. A solution of

diphosphine 1 (0.150 g, 0.16 mmol) in CH₂Cl₂ (250 cm³) and a solution of [PtCl₂(COD)] (0.059 g, 0.16 mmol) in CH₂Cl₂ (250 cm³) were added simultaneously into a 2 L flask containing 750 cm³ of CH₂Cl₂ over a period of 4 h. The resulting solution was stirred for 15 h at room temperature. The solution was concentrated to ca. 5 cm³ and addition of pentane afforded 13 as a white precipitate. Yield: 0.172 g, 90%. mp > 280 °C. ¹H NMR (CDCl₃): all signals are sharp: δ 7.26–6.98 (m, 24 H, PPh₂ and m-H of OArP), 6.88 (broad s, 4H, m-H of OAr), 4.56 and 3.26 [2d, AB spin system, 8H, ArC H_2 Ar, $^3J(AB) = 13.7$ Hz], 4.10 (t, 4H, OCH₂ of OArP, $^{3}J = 7.8$ Hz), 3.82 (t, 4H, OCH₂ of OAr, $^{3}J = 6.3 \text{ Hz}$), 1.96–1.91 (m, 8H, OCH₂CH₂), 1.17 and 0.89 (2t, 12H, CH₃, ${}^{3}J = 7.3$ Hz). ${}^{13}C\{{}^{1}H\}$ NMR (CDCl₃): δ 159.10 and 157.31 (2s, arom. C_q-O), 136.49–123.94 (arom. C's), 77.50 and 77.05 (2s, OCH₂), 31.28 (s, Ar*C*H₂Ar), 23.63 and 22.84 (2s, *C*H₂CH₃), 10.91 and 9.81 (2s, CH₃). ³¹P{¹H}NMR (CDCl₃): δ 10.4 [s with Pt satellites, PPh₂, J(PPt) = 3651 Hz]. FAB mass spectrum: m/z (%) 1226.3 (15) [M⁺, expected isotopic profile)], 1191.3 (100) $[(M - CI)^+]$, 1155.3 (62) $[(M - 2CI)^+]$. Found: C. 62.50; H, 5.37. Calc. for $C_{64}H_{66}Cl_2O_4P_2Pt$ ($M_r = 1227.18$): C, 62,64; H, 5.42%.

trans-P,P'-Dichloro {5,17-bis(diphenylphosphino)-25,26,27,28tetrapropoxycalix[4]arene}platinum(II) 14. A solution of [PtCl₂(PhCN)] (0.074 g, 0.16 mmol) in CH₂Cl₂ (150 cm³) was added dropwise to a solution of 1 (0.150 mg, 0.16 mmol) in CH₂Cl₂ (800 cm³) within 1 h. The resulting solution was stirred overnight at room temperature. The solution was concentrated to ca. 5 cm³ and addition of hexane afforded a yellow precipitate. Yield: 0.086 g, 45%. mp > 250 °C. ¹H NMR (CDCl₃): all signals are sharp, in keeping with a monomeric structure: δ 7.75–7.72 and 7.28–7.27 (2m, 20 H, PPh₂), 6.85 and 6.70 (d and t, AB₂ spin system, 6H *m*-H and *p*-H of OAr, ${}^{3}J$ = 7.5 Hz), 6.74 [virtual t, 4H, *m*-H of OArP, 3 + ${}^{5}J$ (PH) = 10.5 Hz], 4.48 and 3.14 [2d, AB spin system, 8H, $ArCH_2Ar$, $^3J(AB) = 13$ Hz], 4.07 (t, 4H, OCH₂ of OArP, $^{3}J = 8.3$ Hz), 3.77 (t, 4H, OCH₂ of OArBr, ${}^{3}J = 6.9 \text{ Hz}$), 2.11–1.92 (2m, 8H, OCH₂CH₂), 1.14 and 0.91 (2t, 12H, CH₃, ${}^{3}J = 7.0 \text{ Hz}$). ${}^{13}C\{{}^{1}H\}$ NMR (CDCl₃): δ 157.02 and 156.33 (2s, arom. Cq-O), 133.35–122.00 (arom. C's), 77.42 and 76.42 (2s, OCH2), 30.80 (s, ArCH2Ar), 23.61 and 23.01 (2s, CH₂CH₃), 10.83 and 9.82 (2s, CH₃). ³¹P{¹H} NMR (CDCl₃): δ 20.6 [s with Pt satellites, PPh₂, J(PPt) = 2584 Hz]. FAB mass spectrum: m/z (%) 1191.2 (38) $[(M - C1)^{+},$ expected istopic profile], 1170.3 (47) [(M - Cl + O)⁺, expected isotopic profile], 1155.3 (100) [(M - 2Cl)⁺, expected isotopic profile] (the assignment of a monomeric structure is based on the sharpness of the NMR signals). Found: C, 62.49; H, 5.63. Calc. for $C_{64}H_{66}Cl_2O_4P_2Pt$ ($M_r = 1227.18$): C, 62.64; H, 5.42%.

cis-P,P'-{[5,17-bis(diphenylphosphino)-25,26,27,28-tetrapropoxycalix[4]arene]norbornadiene}rhodium(I) tetrafluoroborate 15. A solution of AgBF₄ (0.031 g, 0.16 mmol) in THF (1 cm³) was added to a solution of [{RhCl(norbornadiene)}₂] (0.036 g, 0.08 mmol) in CH₂Cl₂ (10 cm³). Stirring was stopped after 5 min and the solution was decanted to eliminate AgCl. The supernatant was filtered through Celite and added to a solution of 1 (0.150 g, 0.16 mmol) in CH₂Cl₂ at -40 °C (30 cm³). After 1 h the solution was concentrated to ca. 5 cm³ and addition of hexane afforded an orange precipitate. Yield: 0.049 g, 25%. mp 227 °C (dec.). ${}^{1}H$ NMR (CDCl₃): δ 7.22–6.76 (m, 24H, PPh₂ and m-H of OArBr), 6.50 [virtual t, 4H, m-H of OArP, $^{3+5}J(PH) = 10$ Hz], 4.57 and 3.25 [2d, AB spin system, 8H, ArC H_2 Ar, 3J (AB) = 13.9 Hz], 4.37 (broad s, 4H, =CH of nbd), 4.08 (t, 4H, OCH₂ of OArP, ${}^{3}J = 8.3 \text{ Hz}$), 3.91 (broad s, 2H, CH₂ of nbd), 3.79 (t, 4H, OCH_2 of OArBr, ${}^3J = 6.3$ Hz), 1.94–1.87 (m, 8H, OCH_2CH_2), 1.42 (broad s, 2H, CH of nbd), 1.14 and 0.84 (2t, 12H, CH₃, $^{3}J = 7.0 \text{ Hz}$). $^{13}\text{C}\{^{1}\text{H}\}$ NMR (CDCl₃): δ 158.19 and 158.17 (2s, arom. C_q-O), 136.99-122.31 (arom. C's), 77.34 and 76.71 (2s, OCH₂), 52.70 (CH of nbd), 30.92 (s, ArCH₂Ar), 29.72 (CH₂ of nbd), 23.61 and 22.76 (2s, CH₂CH₃), 10.87 and 9.70 (2s, CH₃).

³¹P{¹H} NMR (CDCl₃): δ 24.6 [d, PPh₂, J(PRh) = 156 Hz]. FAB mass spectrum: m/z (%) 1258.4 (3) [M - O]⁺, 1171.5 (43) [M - BF₄ + O]⁺, 1155.55 (38) [M - BF₄]⁺. Found: C, 68.83; H, 6.19. Calc. for $C_{71}H_{74}BF_4O_4P_2Rh$ (M_r = 1243.04): C, 68.61; H, 6.00%.

 $(\eta^3$ -2-Methylallyl){P,P'-[5,17-bis(diphenylphosphino)-25,26, 27,28-tetrapropoxycalix[4]arene]}palladium(II) tetrafluoroborate **16.** A solution of AgBF₄ (0.020 g, 0.10 mmol) in THF (1 cm³) was added to a solution of [Pd(η³-C₄H₇)Cl]₂ (0.020 g, 0.05 mmol) in CH₂Cl₂(3 cm³). Stirring was stopped after 5 min and the solution was decanted to eliminate AgCl. The supernatant was filtered through Celite and added to a solution of diphosphine 1 (0.100 g, 0.104 mmol) in CH_2Cl_2 (30 cm³). After 12 h the solution was concentrated to ca. 5 cm³ and addition of pentane afforded a white precipitate. Yield: 0.113 g, 90%. mp > 280 °C (dec.). ¹H NMR (CDCl₃, 300 MHz, 298 K): δ 7.36–6.34 (30H, aromatic H), 4.56 and 3.25 [d, AB spin system, 4H, ArCH₂Ar, $^{3}J(AB) = 14.1 \text{ Hz}$, 4.55 and 3.23 [d, AB spin system, 4H, $ArCH_2Ar$, ${}^3J(AB) = 14.0 \text{ Hz}$, $4.12-4.05 \text{ (m, 4H, OCH}_2 \text{ of }$ OArP), 3.83 (t, 4H, OCH₂ of OArBr, ${}^{3}J = 5.7$ Hz), 3.51 (broad s, 2H, CH_{syn}-allyl), 3.09-3.03 (broad m, 2H, CH_{anti}-allyl), 2.06 (s, 3H, Me-allyl), 1.99-1.87 (m, 8H, OCH₂CH₂), 1.19 (t, 6H, CH_2CH_3 , $^3J = 7.3$ Hz), 0.88–0.85 (2 overlapping t, 6H, CH_2 -CH₃). Running the ¹H NMR spectrum at 223 K on a 500 MHz spectrum splits all signals, resulting in a C_1 -symmetrical species. $^{31}P\{^{1}H\}$ NMR (CDCl₃, 298 K, 121 MHz): δ 23.11 (s, PPh₂). $^{31}P\{^{1}H\}NMR$ (CD₂Cl₂, 223 K, 202 MHz): δ 24.4 and 24.0 [AB spin system, J(AB) = 37 Hz]. FAB mass spectrum: m/z (%) 1121.3 (100) $[(M - BF_4)^+, expected isotopic profile], 1066.2$ (20) [(M – Cl)⁺, expected isotopic profile). Found: C, 67.71; H, 6.09. Calc. for $C_{68}H_{73}BF_4O_4P_2Pd$ ($M_r = 1209.49$): C, 67.53; H, 6.08%.

Dichloro(η⁶-*p*-cymene)[5-diphenylphosphino-11,17,23-tribromo-25,26,27,28-tetrapropoxycalix[4]arene]ruthenium(II)

17. A solution of $[RuCl_2(p\text{-cymene})]_2$ (0.034 g, 0.056 mmol) in CH₂Cl₂ (5 cm³) was added dropwise to a solution of monophosphine 5 (0.113 g, 0.112 mmol) in CH₂Cl₂ (50 cm³). After stirring for 15 min the solution was concentrated to ca. 5 cm³. Addition of hexane afforded 17 as an analytically pure orange powder. Yield: 0.125 g, 85%. mp 163 °C (dec.). ¹H NMR (200 MHz, CDCl₃): δ 7.56–7.26 (10H, PPh₂), 7.12 [d, 2H, m-H of OArP, ${}^{3}J(PH) = 5 \text{ Hz}$, (s, 2H, m-H of OArBr), 7.10 and 7.00 [2d, AB spin system, 4H, m-H of OArBr, ${}^4J(AB) = 2$ Hz], 6.74 (s, 2H, m-H of OArBr), 5.13 and 4.10 [2d, AA'BB' spin system, 8H, C_6H_4 of p-cymene, ${}^3J(AB) = {}^3J(A'B') = 6$ Hz], 4.47 and 3.21 [2d, AB spin system, 4H, ArC H_2 Ar, 2J (AB) = 13 Hz], 4.41 and 3.14 [2d, AB spin system, 4H, ArC H_2 Ar, 2J (AB) = 12 Hz], 4.06– 3.97 (m, 4H, OCH, of OArBr), 3.80-3.72 [5H, OCH, and $CH(CH_3)_2$ of p-cymene], 2.12–1.86 (m, 8H, OCH_2CH_2), 1.25 [d, 6H, $CH(CH_3)_2$], 1.07, 1.00, and 0.96 (3 overlapping t, 3H : 6H : 3H, CH₃), 1.03 (s, 3H, p-Me of p-cymene). As shown by a 2D ROESY experiment, the ArMe protons correlate with the m-H at 6.74 ppm. ${}^{31}P\{{}^{1}H\}$ NMR (CDCl₃): δ 27.4 (s, PPh₂). Found: C, 54.72; H, 5.18. Calc. for $C_{62}H_{68}Br_3Cl_2O_4PRu\cdot1/2CH_2Cl_2$ ($M_r =$ 1319.89 + 42.46): C, 55.10; H, 5.11%.

X-Ray crystallography

Crystal data for 12. Crystals suitable for X-ray diffraction were obtained by slow evaporation of a chloroform solution: $C_{64}H_{64}Br_2Cl_2O_4P_2Pt\cdot 2CHCl_3$, M=1623.74, triclinic, space group $P\bar{1}$, colourless prisms, a=14.9754(2), b=15.6505(2), c=16.3093(2) Å, a=67.133(5), $\beta=69.265(5)$, $\gamma=83.969(5)^\circ$, U=3291.59(7) ų, Z=2, $\mu=0.377$ mm $^{-1}$, F(000)=1616. Data were collected on a Nonius KappaCCD diffractometer (graphite Mo-K α radiation, 0.71073 Å) at -100 °C. 21721 Reflections collected with $2.5 < \theta < 27.50^\circ$, 12196 data with $I>3\sigma(I)$. The structure was solved by direct methods and refined anisotropically on F^2 using the OpenMoleN package.³³

Hydrogen atoms were included using a riding model or rigid methyl groups. Final results: R(F) = 0.031, wR(F) = 0.043, goodness-of-fit = 1.012, 748 parameters, largest difference peak = 1.181 e Å⁻³.

CCDC reference number 174550.

Crystal data for 16. Crystals suitable for X-ray diffraction were obtained by slow diffusion of hexane into a chloroform solution of the complex: $C_{68}H_{73}BF_4O_4P_2Pd\cdot CHCl_3$, M=1328.87, tetragonal space group, P4/n, pale yellow, a=34.292(5), b=34.292(5), c=11.204(5) Å, U=13175(6) ų, $D_c=1.272$, Z=8, $\mu=0.447$ mm $^{-1}$, F(000)=5212. Data were collected on a Nonius KappaCCD diffractometer (graphite Mo-K α radiation, 0.71073 Å) at -100 °C. 18836 Reflections collected with $1.88 < \theta < 30.03^\circ$, 9230 data with $I>2\sigma(I)$. The structure was solved by direct methods and refined anisotropically on F^2 using the SHELXL-97 procedure. Hydrogen atoms were included using a riding model or rigid methyl groups. The chloroform molecule is disordered over two positions. There is also some disorder in one propyl group. Final results: $R(F^2)=0.073$, $wR(F^2)=0.21$, goodness-of-fit = 1.013, 734 parameters, largest difference peak = 2.1 e Å $^{-3}$.

CCDC reference number 174549.

Crystal data for 17. Crystals suitable for X-ray diffraction were obtained by slow diffusion of hexane into a dichloromethane solution of the complex: C₆₂H₆₈Br₃Cl₂O₄PRu·3CH₂Cl₂· 0.5hexane, M = 1617.80, triclinic, space group $P\bar{1}$, orange-red crystals, a = 11.7406(3), b = 15.2248(4), c = 21.8972(5) Å, a = 1.8972(5)77.445(5), $\beta = 88.005(5)$, $\gamma = 73.474(5)^{\circ}$, $U = 3661.2(2) \text{ Å}^3$, Z = 2, $\mu = 0.221 \text{ mm}^{-1}$, F(000) = 1642. Data were collected on a Nonius KappaCCD diffractometer (graphite Mo-Kα radiation, 0.71073 Å) at -100 °C. 21030 Reflections collected with 2.5 < θ < 27.48°, 7201 data with $I > 3\sigma(I)$. The structure was solved by direct methods and refined anisotropically on F^2 using the OpenMoleN package.33 Hydrogen atoms were included using a riding model or rigid methyl groups. One dichloromethane molecule is disordered over two positions. Final results: R(F) =0.060, wR(F) = 0.085, goodness-of-fit = 1.382, 732 parameters, largest difference peak = 1.059 e Å^{-3} .

CCDC reference number 174551.

See http://www.rsc.org/suppdata/dt/b1/b110884k/ for crystallographic data in CIF or other electronic format.

Acknowledgements

We are grateful to Johnson Mathey for a generous loan of precious metals. We thank the University Louis Pasteur for financial support.

References

1 C. Wieser-Jeunesse, D. Matt, M. R. Yaftian, M. Burgard and J. M. Harrowfield, C. R. Acad. Sci. Paris, Ser. IIc, 1998, 479.

- 2 C. Wieser, C. B. Dieleman and D. Matt, Coord. Chem. Rev., 1997, 165, 93.
- 3 D. M. Roundhill, Prog. Inorg. Chem., 1995, 43, 533.
- 4 S. Steyer, D. Jeunesse, D. Armspach, D. Matt and J. M. Harrowfield, in *Calixarenes 2001*, eds. Z. Asfari, V. Böhmer, J. M. Harrowfield and J. Vicens, Kluwer Academic Publishers, Dordrecht, 2001, pp. 513–535.
- 5 S. Shimizu, S. Shirakawa, Y. Sasaki and C. Hirai, *Angew. Chem., Int. Ed.*, 2000, **39**, 1256.
- 6 C. Wieser-Jeunesse, D. Matt and A. De Cian, *Angew. Chem.*, 1998, 37, 2861.
- 7 S. Blanchard, L. Le Clainche, M.-N. Rager, B. Chansou, J.-P. Tuchagues, A. F. Duprat, Y. Le Mest and O. Reinaud, *Angew. Chem.*, Int. Ed., 1998, 37, 2732.
- 8 S. Blanchard, M.-N. Rager, A. F. Duprat and O. Reinaud, New J. Chem., 1998, 22, 1143.
- B. R. Cameron, S. J. Loeb and G. P. A. Yap, *Inorg. Chem.*, 1997, 36, 5498.
- 10 E. Engeldinger, D. Armspach and D. Matt, *Angew. Chem., Int. Ed.*, 2001, 40, 2526.
- 11 M. Vézina, J. Gagnon, K. Villeneuve, M. Drouin and P. D. Harvey, Organometallics, 2001, 20, 273.
- 12 M. Vézina, J. Gagnon, K. Villeneuve, M. Drouin and P. D. Harvey, Chem. Commun., 2000, 1073.
- C. Jaime, J. de Mendoza, P. Prados, P. M. Nieto and C. Sánchez, J. Org. Chem., 1991, 56, 3372.
- 14 C. B. Dieleman, C. Marsol, D. Matt, N. Kyritsakas, A. Harriman and J.-P. Kintzinger, *J. Chem. Soc., Dalton Trans.*, 1999, 4139.
- 15 M. Lejeune, C. Jeunesse and D. Matt, Z. Krystallogr.-New Cryst. Struct., 2002, 217, 51.
- 16 C. Wieser-Jeunesse, Thèse de Doctorat, University Louis Pasteur, Strasbourg, 1998.
- 17 P. Tavs, Chem. Ber., 1970, 103, 2428.
- 18 J. Gagnon, M. Vézina, M. Drouin and P. D. Harvey, Can. J. Chem., 2001, 79, 1439.
- 19 F. Hamada, T. Fukugaki, K. Murai, G. W. Orr and J. Atwood, J. Inclusion Phenom., 1991, 10, 57.
- 20 K. Takenaka, Y. Obora, L. Hong Jiang and Y. Tsuji, *Bull. Chem. Soc. Jpn.*, 2001, 74, 1709.
- 21 C. Dieleman, C. Loeber, D. Matt, A. De Cian and J. Fischer, J. Chem. Soc., Dalton Trans., 1995, 3097.
- 22 H. Günther, NMR-Spektroskopie, 3rd edn., Thieme, Stuttgart, 1992, pp. 309–310.
- 23 C. Jeunesse, C. Dieleman, S. Steyer and D. Matt, J. Chem. Soc., Dalton Trans., 2001, 881.
- 24 J. Suffert, J. Org. Chem., 1989, 54, 509.
- 25 M. Larsen and M. Jørgensen, J. Org. Chem., 1996, 61, 6651.
- 26 R. Uson, A. Laguna and M. Laguna, *Inorg. Synth.*, 1989, 26, 85.
- 27 A. C. Cope and E. C. Friedrich, *J. Am. Chem. Soc.*, 1968, **90**, 909. 28 M. A. Bennett, T.-N. Huang, T. W. Matheson and A. K. Smith, in
- 28 M. A. Bennett, T.-N. Huang, T. W. Matheson and A. K. Smith, in *Inorganic Synthesis*, vol. 21, ed. J. P. Fackler, Jr., John Wiley & Sons, New York, 1982, p. 75.
- 29 D. Drew and J. R. Doyle, in *Inorganic Synthesis*, vol. 28, ed. R. J. Angelici, Wiley, New York, 1990, pp. 350–352.
- 30 F. R. Hartley, The Chemistry of Platinum and Palladium, Wiley, New York, 1973.
- 31 E. W. Abel, M. A. Bennett and G. Wilkinson, J. Chem. Soc., 1959, 3178.
- 32 W. D. Dent, R. Long and A. J. Wilkinson, J. Chem. Soc., 1964, 1585.
- 33 OpenMoleN, Interactive Structure Solution, Nonius B.V., Delft,
- 34 G. M. Sheldrick, SHELX-97, Program for the refinement of crystal structures, University of Göttingen, Germany, 1997.