

Synthesis, molecular structure and reactivity of the first secondary carbaboranylbisphosphine 1,2-bis(phenylphosphino)-1,2-dicarba-*closo*dodecaborane(12)

Viktor P. Balema,^a Maren Pink,^a Joachim Sieler,^a Evamarie Hey-Hawkins^{*a} and Lothar Hennig^b

^a Institut für Anorganische Chemie der Universität Leipzig, Talstrasse 35, D-04103 Leipzig, Germany

^b Institut für Organische Chemie der Universität Leipzig, Talstrasse 35, D-04103 Leipzig, Germany

(Received 1 September 1997; accepted 16 October 1997)

Abstract—The reaction of a diastereomeric mixture of 1,2-bis(phenylchlorophosphino)-1,2-dicarba-*closo*-dodecaborane(12) (1) with LiAlH₄, followed by hydrolysis with H₂O, gives a 4:1 mixture of *rac*- and *meso*-1,2-bis(phenylphosphino)-1,2-dicarba-*closo*-dodecaborane(12) (2a, b) or 1-phenylphosphino-1,2-dicarba-*closo*-dodecaborane(12) (3), depending on the stoichiometry employed. A mixture of 2a, b reacts with sulfur in undecane at 190°C or without solvent at 105–110°C to give exclusively the cyclic anhydride of 1,2-bis(phenylphosphoryl)-1,2-dicarba-*closo*-dodecaboranyl(12)-dithiodiphosphinic acid (6). 2, 3 and 6 were characterised spectroscopically (¹H, ³¹P, ¹¹B, ¹³C NMR, IR, MS) and X-ray structure determinations were carried out on the racemic isomers 2a and 6. © 1998 Elsevier Science Ltd. All rights reserved

Keywords: secondary carbaboranylbisphosphine; cyclic anhydride of 1,2-bis(phenylthiophosphoryl)-1,2-dicarba-*closo*-dodecaboranyl(12)-dithiodiphosphinic acid.

Organic or organo-element derivatives of dicarbacloso-dodecaboranes(12) have received increasing attention during the past decade as they exhibit interesting chemical and physical properties. Thus, these compounds have been employed as catalysts [1,2], as doping reagents in semiconductor materials [3], as precursors for ceramic materials [4], and in neutroncapture therapy of tumors (boron neutron capture therapy) [5] and other medical areas [6,7]. Hence applications in medicine can be envisioned for related carbaboranylphosphines and transition metal complexes thereof [8].

While tertiary phosphino derivatives of dicarbacloso-dodecaboranes(12), which were first reported in 1963 [9], have been employed as ligands in transition metal chemistry and as starting materials for the preparation of other *closo*-carbaborane(12)-containing We now report the synthesis and spectroscopic properties of the first secondary bisphosphinocarbaboranes, *rac*- and *meso*-1,2-bis(phenylphosphino)-1,2-dicarba-*closo*-dodecaborane(12) (**2a**, **2b**) and 1-phenylphosphino-1,2-dicarba-*closo*dodecaborane(12) (**3**), as well as the separation of the diastereoisomers of **2** and the molecular structure of the *racemic* isomer **2a**. **2a**, **b** react with sulfur in boiling

organophosphorus compounds [10], their secondary analogues have remained largely unexplored. The only report on the attempted synthesis of secondary phosphinocarbaboranes, by A.V.Kasantsev *et al.* in 1971, claims that the reaction of 2-substituted 1phenylchlorophosphino-1,2-dicarba-*closo*-dodecaboranes(12) with LiAlH₄ yields the corresponding 1phenylphosphino-1,2-dicarba-*closo*-dodecaboranes (12), which, however, decompose under the reaction conditions with formation of C-substituted 1,2dicarba-*closo*-dodecaboranes(12) and primary phosphines [11].

^{*} Author to whom correspondence should be addressed

undecane or at elevated temperature without solvent to give the cyclic anhydride of 1,2-bis(phenylthiophosphoryl)-1,2-dicarba-*closo*-dodecaboranyl (12)-dithiodiphosphinic acid (6), which was also structurally characterised.

RESULTS AND DISCUSSION

Synthesis and properties of 2, 3 and 6

A mixture (4:1) of *rac*- and *meso*-1,2-bis(phenylphosphino)-1,2-dicarba-*closo*-dodecaborane(12) (**2a**, **2b**) was obtained in 91% yield by reacting a diastereomeric mixture of *rac*- and *meso*-1,2-bis-(phenylchlorophosphino)-1,2-dicarba-*closo*-dodecaborane(12) (1) [9] (³¹P: 80.54 and 80.62 ppm) with 1.1 eqv. LiAlH₄ in ether and subsequent hydrolysis with 10 eqv. H₂O (Scheme 1). It was observed previously [11] that the P—C bond is cleaved by an excess of LiAlH₄ and H₂O. Thus, when a 50% excess of LiAlH₄ and 50 eqv. of H₂O are employed, only 1phenylphosphino-1,2-dicarba-*closo*-dodecaborane (12) (**3**) is obtained, in 42% yield, as well as insoluble boron- and phosphorus-containing products (Scheme 1).

The carbaboranylphosphines 2 and 3 are obtained as air- and water-stable colourless solids, soluble in organic solvents, and purifiable by column chromatography. The better solubility of 2b in hexane allows the diastereoisomers of 2 to be separated.

In the ³¹P{H} NMR spectrum, the two diastereoisomers of **2** exhibit singlets at -15.15 for **2a** and -14.98 ppm for **2b**; for **3**, the resonance is shifted to low field (-2.67 ppm, ¹J_{PH} 229 Hz). On proton coupling, the HPC—CPH fragments in **2a** and **2b** show the signals of an AA'XX' spin system. The coupling constants (¹J_{PH} 244 Hz **2a**, 239 Hz **2b**; ³J_{PP} 84 Hz **2a**, 87 Hz **2b**) were obtained from simulated ¹H NMR spectra [12]. However, the two signals of the diastereoisomers of *o*-phenylenebisphosphine, 1,2-(PhPH)₂C₆H₄ (-41.8, -42.4 ppm) [13], and 1,2bis(phenylphosphino)ethane, PhP(H)CH₂CH₂(H)-

PPh (-45.6, -45.9 ppm) [14], are observed in the same range as those of their corresponding monophosphines, Ph_2PH (-41 ppm) [15] and Ph(Et)PH(-46 ppm) [15]. The observation of no notable chemical shift difference in the ³¹P NMR spectra indicates only minor magnetic interaction of the P atoms in these bisphosphines. Thus, the low-field shift of the resonance of 3 relative to 2 cannot be attributed to steric or electronic effects of the second PHPh group. Therefore, the observed difference in the chemical shifts of 2 and 3 must be due to the influence of the 1,2-dicarba-closo-dodecaborane(12) cluster. This assumption is supported by the observed difference in the ³¹P chemical shifts of 1-diphenylphosphino-1,2-dicarba-closo-dodecaborane(12) (25.6 ppm) [16] and 1,2-bis(diphenylphosphino)-1,2dicarba-closo-dodecaborane(12) (8.2 ppm) [17].

To investigate the chemical reactivity of 2a, b, its reaction with sulfur was studied (Scheme 2). No reaction was observed on heating a *racemic* mixture of 2a, b (4:1) and sulfur in THF or toluene under refluxing conditions. However, when the reaction was carried out in undecane at 190°C or without solvent at 105– 110°C, the cyclic anhydride of 1,2-bis(phenylthiophosphoryl)-1,2-dicarba-*closo*-dodecaboranyl-(12)-dithiodiphosphinic acid (6) was obtained in 67 (undecane) or 44% (without solvent) yield.

The course of the reaction, followed by ³¹P NMR spectroscopy, indicated that the reactivity of **2a**, **b** is rather different to that of other secondary 1,2-diphosphines [18–20]. **2a**, **b** were heated with sulfur without solvent and samples were taken after 10 min, 1 h, 2 h, 5 h and 6 h, dissolved in C₆D₆ and studied by ³¹P NMR spectroscopy.

After 10 min. A very intense signal for the starting material **2a**, **b** is observed at ca -15 ppm and several very weak singlets in the range of +64 to +90 ppm, which could not be assigned. In addition, signals for the two diastereoisomers of **4** [doublets at -13.4 ppm (J_{PP} 59 Hz) and -12.3 ppm (J_{PP} 45 Hz) and doublets at +32.2 ppm (J_{PP} 58 Hz) and +33.4 ppm (J_{PP} 45 Hz)] were observed. On proton coupling, the signals

Scheme 1.

Scheme 2.

at low field show additional P—H coupling $[J_{PH} 572$ Hz (δ 32.2 ppm) and $J_{PH} 513$ Hz (δ 33.4 ppm)], indicating the presence of a P(=S)H group [15], while those at high field exhibit coupling constants of 240 and 210 Hz, characteristic of secondary phosphines. The ³¹P NMR data indicate that this compound is the intermediate 1-phenylphosphino-2-phenylthiophosphoryl-1,2-dicarba-*closo*-dodecaborane(12) (4) shown in Scheme 2.

After 1 h, 2 h, 5 h and 6 h. Samples taken after 1–6 h show decreased intensity of the signals of **2a**, **b** and **4**, while a singlet at +75 ppm increases in intensity, indicating the formation of **6**. A crystal structure determination (*vide infra*) showed that **6** consists of the *racemic* isomer only. Surprisingly, no signals for the proposed intermediate, the bis(phosphinesulfide) derivative, are observed. In contrast, the reaction of related 1,2-diphosphines, $H(Ph)P(CH_2)_nP(Ph)H$ (n = 2-6), with sulfur gave the corresponding disulfides, $H(S)(Ph)P(CH_2)_nP(Ph)(S)H$, as the only reaction products [19].

Molecular structure of 2a and 6

Crystal structure determinations were carried out on the *racemic* isomer **2a** (Fig. 1) and on **6**. The latter proved to be the *racemic* isomer (Fig. 2). To our knowledge, **2a** is the first structurally characterised secondary 1.2-dicarba-*closo*-dodecaboranyl(12)bisphosphine, and **6** the first structurally characterised cyclic 1.2-bis(thiophosphoryl)-1.2-dicarba-*closo*dodecaboranyl(12)-dithiodiphosphinic acid anhydride. **2a** crystallises in the centrosymmetric monoclinic space group C2/c, and the molecule is located on a crystallographic C_2 axis which bisects the C(1)—C(1)'and B(2)—B(2)' bonds. The cyclic anhydride of 1,2-bis(phenylthiophosphoryl)-1,2-dicarba-*closo*dodecaboranyl(12)-dithiodiphosphinic acid (**6**) crystallises in the centrosymmetric monoclinic space group $P2_1/n$. Of the two possible diastereomers, the *racemic* form is present. Due to the presence of an inversion centre in both space groups, both enantiomeric forms of **2a** and **6** (*R*,*R*) and (*S*,*S*), are present in the unit cell. Selected bond lengths and bond angles are given in Tables 1 and 2.

The $B_{10}H_{10}C_2P_2Ph_2$ fragments of 6 and 2a are similar, A comparison of the P-C and C-C bond lengths of 2a and 6 with the related phosphino-1,2-dicarba-1-diphenylphosphino-2closo-dodecaboranes(12), thioisopropyl-1,2-dicarba-closo-dodecaborane(12) 7 1-diphenylphosphino-2-methyl-1,2-dicarba-[21]. closo-dodecaborane(12) 8 [22], and 1,2 bis(diisopropylphosphino)-1,2-dicarba-closo-dodecaborane (12) 9 [23], shows only a small shortening of the C_{carbaborane}—C_{carbaborane} bond length in **2a** [1.683(2) Å] and 6 [1.658(3)] compared with 7 [1.747(5) Å], 8 [1.702(6) Å] and 9 [1.719(3) Å]. The P-C_{earbaborane} [1.8727(13) for 2a, 1.870(2), 1.862(2) for 6, 1.884(4) for 7, 1.884(4) for 8 and 1.891(3), 1.894(3) Å for 9] and P---C_{Ph} bond lengths [1.8244(14) for 2a, 1.807(3), 1.805(2) for 6, 1.832(5) Å, 1.822(5) Å for 7, and 1.829(4) Å, 1.832(4) Å for 8] remain largely unchanged.

Dithiodiphosphinic acid anhydrides structurally related to 6 are rare. A similar (S)P - S - P(S) frame-

V. P. Balema et al.

Fig. 1. Molecular structure of 2a showing the atom numbering scheme employed (SHELXTL PLUS; XP) [26].

Fig. 2. Molecular structure of 6 showing the atom numbering scheme employed (SHELXTL PLUS; XP) [26].

work is observed in **6** [P=S 1.9154(9), 1.9218(9), P-S 2.1106(9), 2.1211(9) Å], *rac*-[Me(Bu')P(S)]₂S (10) [24] [P=S 1.939(1), 1.941(1), P-S 2.126(1), 2.123(1) Å], and 3,5-di-*tert*-butyl-1,8-epithio- $1\lambda^5,8\lambda^5$ -naphthol-[1,8-*cd*][1,7,2,6]benzodioxadiphosphonine-1,8-

dithione (11) [25] [P=S 1.917(2), 1.905(2), P–S 2.074(2), 2.087(2) Å]. The latter is, however, obtained as the *meso* form only, due to the presence of two fused rings [C₃P(=S)₂S and C₂O₂P(=S)₂S]. The P–S–P [6: 103.44(4), 10: 104.78(5)°] and S–P–S

P(1)—C(1)	1.8727(13)	P(1)C(2)	1.8244(14)
P(1) - H(1P)	1.32(2)	C(1) - C(1)'	1.683(2)
B(1) - C(1)	1.712(2)	B(4)—C(1)'	1.714(2)
B(4) - C(1)	1.737(2)	B(5) - C(1)	1.712(2)
B—B from 1.769(2) to 1.792(2)		B—H from 1.05(2) to 1.09(2)	
C(2) - P(1) - C(1)	104.58(6)	C(2) - P(1) - H(1P)	98.6(8)
C(1) - P(1) - H(1P)	92.4(8)	C(1) - B(1) - B(3)'	105.2(1)
C(1) - B(1) - B(4)'	58.78(8)	C(1) - B(1) - B(2)	105.1(1)
C(1) - B(1) - B(4)'	58.78(8)	C(1) - B(1) - B(2)	

Table 1. Selected bond lengths (Å) and angles (°) for 2a

Table 2. Selected bond lengths (Å) and angles (°) for 6

S(1) P(1)	1.0157(0)	S(2) = P(2)	1.0218(0)
S(1) = F(1)	1.9104(9)	S(2) - F(2)	2.1211(0)
S(3) - P(2)	2.1106(9)	S(3) - P(1)	2.1211(9)
P(1) - C(11)	1.807(3)	P(1) - C(1)	1.870(2)
P(2)—C(21)	1.805(2)	P(2) - C(2)	1.862(2)
C(1) - C(2)	1.658(3)	C(1) - B(3)	1.709(4)
C(1) - B(2)	1.713(3)	C(1) - B(1)	1.731(4)
C(1)—B(4)	1.731(4)	C(2)—B(5)	1.709(4)
C(2)—B(6)	1.724(4)	C(2) - B(1)	1.727(4)
C(2)—B(4)	1.736(4)		
B—B from 1.764(4) to 1	.791(5)		
P(2) - S(3) - P(1)	103.44(4)	C(11) - P(1) - C(1)	104.05(11)
C(11) - P(1) - S(1)	115.38(9)	C(1) - P(1) - S(1)	113.61(8)
C(11) - P(1) - S(3)	105.62(9)	C(1) - P(1) - S(3)	99.95(8)
S(1) - P(1) - S(3)	116.42(4)	C(21) - P(2) - C(2)	106.71(11)
C(21) - P(2) - S(2)	115.40(9)	C(2) - P(2) - S(2)	113.13(8)
C(21) - P(2) - S(3)	107.02(9)	C(2) - P(2) - S(3)	101.01(8)
S(2) - P(2) - S(3)	112.39(4)	C(2) - C(1) - P(1)	116.6(2)
C(1)—C(2)—P(2)	116.2(2)		

[6: 116.42(4), 112.39(4), 10: 115.68(5), 117.36(5)°] bond angles of 6 and 10 are in the same range, while those of 11 are much smaller [P—S—P 97.21(6), S—P—S 109.90(8), 110.51(8)°] as the P—S—P group is part of two strained fused cyclic systems.

CONCLUSION

The results presented here show that the secondary carbaboranylphosphines 2 and 3 are readily accessible, air- and water-stable solids. The diastereoisomers 2a and 2b can be separated by fractional crystallisation. The reaction of 2a, b with sulfur indicates that the reactivity of secondary carbaboranylphosphines differs significantly from that of secondary alkyl- or arylbisphosphines. Further studies of the reactivity of **2** are under way.

EXPERIMENTAL

All experiments were carried out under purified dry argon. Solvents were dried and freshly distilled under argon. NMR spectra: Avance DRX 400 (Bruker), standards: ¹H NMR (400 MHz): trace amounts of protonated solvent, C_6D_6 , ¹³C NMR (100.6 MHz): internal solvent, ³¹P NMR (162 MHz): external 85% H₃PO₄, ¹¹B NMR : external BF₃ · Et₂O. The IR spectra were recorded as KBr mulls on a Perkin–Elmer FT-IR spectrometer System 2000 in the range 350–4000 cm⁻¹. The melting points were determined in sealed capillaries under argon and are uncorrected. *Rac-* and *meso-*1,2-bis(phenylchlorophosphino)-1,2-dicarbacloso-dodecaborane(12) (1) were prepared by literature procedures [9] and obtained in 80% yield.

Synthesis of rac- and meso-1,2-bis(phenylphosphino)-1,2-dicarba-*closo*-dodecaborane(12) (**2a**), (**2b**)

A suspension of $LiAlH_4$ (0.5 g, 13 mmol) in 25 cm³ ether was added to a solution of 1 (5.1 g, 11.8 mmol) in 125 cm³ ether at 0°C over 1.5 h. The reaction was kept at 0°C for 1 h, then for 1 h at 16°C; finally, the mixture was refluxed for 1 h. After cooling to r.t., 2.1 cm³ H_2O was added, the mixture filtered and the solution dried over NaHSO4. The ether was removed in vacuo to give 3.9 g (91%) 2. The diastereoisomers were separated by fractional crystallisation from hexane. After 6 crystallisations, 0.8 g of pure 2a or, after 10 crystallisations, 0.06 g of 2b were obtained. M.p. 148-149°C, 2a; 120-124°C, 2b. Found: C, 46.93; H, 6.01; P, 16.49. Calc.: for C₁₄H₂₂B₁₀P₂: C, 46.68; H, 6.10; P, 17.16%. IR for **2a**, **2b** (KBr) cm⁻¹: 3072 (C-H); 2626, 2606, 2583, 2561 (B-H); 2323 (P—H); 1957, 1814 (Ph); 1584; 1483; 1436; 1310; 1276; 1113; 1079; 1026; 1000; 941; 919; 876; 813; 741; 728; 689; 483; 407.

Spectroscopic data for **2a** (C₆D₆, 25°C). ¹H NMR (400 MHz): δ 7.30 (m, 4H, Ph), 7.00 (m, 6H, Ph), 4.78 (dt, 2H, P—H, ¹J_{PH} 244 Hz, ³J_{PP} 82 Hz), 3.5–1.6 ppm (br, m, B—H); ³¹P (161.9 MHz): δ –15.15 ppm (dt, ¹J_{PH} 246 Hz, ³J_{PP} 84 Hz); ¹³C (100.6 MHz): δ 136.8 (m, *ipso*-C, Ph), 131.0, 130.9, 129.0 (Ph). 76.3 ppm (m, C₂B₁₀H₁₀); ¹¹B (128.4 MHz): δ –0.9 (2B, ¹J_{BH} 142 Hz), -7.2 (4B, ¹J_{BH} 144 Hz), -9.4 (2B, ¹J_{BH} 225 Hz), -11.3 ppm (2B).

Spectroscopic data for **2b** (C₆D₆, 25 C). ¹H NMR (400 MHz): δ 7.30 (m, 4H, Ph), 7.00 (m, 6H, Ph), 4.78 (dt, 2H, P—H, ¹J_{PH} 239 Hz, ³J_{PP} 87 Hz), 3.5–1.6 ppm (br, m, B—H); ³¹P (161.9 MHz): δ – 14.98 ppm (dt, ¹J_{PH} 239 Hz, ³J_{PP} 87 Hz); ¹³C (100.6 MHz): δ 136.8 (m, *ipso*-C, Ph), 131.0, 130.9, 129.0 (Ph), 77.6 ppm (m, C₂B₁₀H₁₀); ¹¹B (128.4 MHz): δ –0.9 (2B, ¹J_{BH} 142 Hz), -7.2 (4B, ¹J_{BH} 144 Hz), -9.4 (2B, ¹J_{BH} 225 Hz), -11.3 ppm (2B).

Synthesis of 1-phenylphosphino-1,2-dicarba-*closo*-dodecaborane(12) (**3**)

3 was prepared analogously to **2** from **1** (5.7 g, 13.3 mmol) in 125 cm³ ether, 0.8 g (21 mmol) LiAlH₄ in 30 cm³ ether and 10.5 cm³ H₂O. **3** was purified by column chromatography (hexane/acetone 4:1), yield 1.4 g (42%). M.p. 33–36 C. ¹H NMR (400 MHz, C₆D₆, 25 C) : δ 7.05, 7.00, 6.92 (m, 5H, Ph), 4.57 (d, 1H, ¹J_{PH} 229 Hz, P—H), 3.5–1.6 ppm (br, m, B—H); ³¹P (161.9 MHz, C₆D₆, 25°C) : δ –2.67 ppm (d, ¹J_{PH} 229 Hz); ¹¹B (128.4 MHz, C₆D₆, 25°C) : δ –1.2 (1B, ¹J_{BH} 160 Hz), –2.7 (1B, ¹J_{BH} 170 Hz), –7.6 (2B, ¹J_{BH} 200

Hz), -12.8 ppm (4B); ¹³C (100.6 MHz, C₆D₆, 25°C): δ 136.7 (d, ¹J_{CP} 18 Hz, *ipso*-C, Ph), 131.8, 130.6, 129.8 (Ph), 69.0 (d, ¹J_{CP} 60 Hz, C₂B₁₀H₁₁), 63.8 ppm (d, ¹J_{C11} 196 Hz, C₂B₁₀H₁₁); IR (KBr) cm⁻¹: 3058, 2957, 2927 (C—H): 2586 (B—H); 2320 (P—H); 1957, 1884 (Ph); 1585; 1483; 1437; 1308; 1275; 1172; 1115; 1091; 1072; 1025; 1001; 944; 918; 900; 827; 795; 739; 720; 692; 628; 481; 408. Found: C, 39.07; H, 6.77; P, 11.50. Calc.: for C₈H₁₇B₁₀P: C, 38.14; H, 6.75; P, 12.28%.

Synthesis of the cyclic anhydride of 1,2-bis(phenyl-thiophosphoryl)-1,2-dicarba-closo-dodecaboranyl-(12)-dithiodiphosphinic acid (**6**)

In undecane. A racemic mixture of **2a**, **b** (0.72 g, 2.0 mmol) and sulfur (0.07 g, 9.0 mmol) were heated in undecane (20 cm³) at 190-200°C for 5 h. The solvent was distilled off in vacuo, the greyish residue was then dissolved in hot hexane and filtered. 6 was obtained on cooling the hexane solution to -5° C, yield 0.6 g (67%). M.p. 229–232°C. ¹H NMR (400 MHz, C₆D₆, 25 C): δ 8.15 (m, Ph), 6.93 (m, Ph), 3.5–1.9 ppm (br, m, B—H); ³¹P (161.9 MHz, C_6D_6 , 25°C): δ 75.1 ppm; ¹¹B (128.4 MHz, C₆D₆, 25°C): δ – 2.7 (J_{BH} 167 Hz), -4.2 (J_{BH} 166 Hz), -10.3 ppm; 13 C (100.6 MHz, C₆D₆, 25°C): δ 134.3, 133.8, 130.1, 128.9 (Ph), 85.4 (m, $C_2B_{10}H_{10}$). IR (KBr) cm⁻¹: 3059 (C—H); 2664, 2651, 2615, 2583, 2571, 2554 (B-H); 1815 (Ph); 1580; 1480; 1437; 1311; 1187; 1161; 1092; 1078; 1027; 997; 903; 848; 799; 735; 722; 687; 671 $(v_{s}P_{2}S_{2}); 625; 614; 560; 535; 475; 430; 417.$ Vibrations for P—S—P and $v_{as}P_2S_2$ are expected in the range 450-600 cm⁻¹ [28]; however, they cannot be unambiguously assigned. Found: C, 37.04; H, 4.89; S. 20.92; P, 13.23. Calc.: for C₁₄H₂₀B₁₀P₂S₃: C, 37.00; H, 4.40; S, 21.04; P, 13.59%.

Without solvent. A racemic mixture of **2a**, **b** (1.0 g, 2.7 mmol) and sulfur (0.35 g, 10.9 mmol) were heated at 105–110 °C for 6 h. After 10 min, 1, 2, 5 and 6 h the reaction mixture was cooled to room temperature and samples were taken for ³¹P NMR spectroscopic studies. After completion of the reaction, the white mixture was dissolved in hot hexane and worked up as described above giving 0.53 g (44%) of **6**.

Data collection and structural refinement of 2a and 6

Crystal data for **2a**. $C_{14}H_{22}B_{10}P_2$, M = 360.36, white crystals, $0.4 \times 0.3 \times 0.2$ mm, monoclinic, space group C2/c (no. 15), T = 293(2) K, a = 20.2581(13), b = 8.8653(6), c = 11.8046(9) Å, $\beta = 112.374(1)^\circ$, V = 1960.4(2) Å³, Z = 4, $D_c = 1.221$ g cm⁻³, F(000) = 744, μ (Mo- K_a) = 0.216 mm⁻¹, 7114 reflections collected with $2 < \Theta < 26^\circ$; of these 1826 were independent; 162 parameters, refinements converge to $R_1 = 0.0317$, $wR_2 = 0.0816$ (for reflections with $I > 2\sigma(I)$), $R_1 = 0.0359$, $wR_2 = 0.0837$ (all data).

Crystal data for 6. $C_{14}H_{20}B_{10}P_2S_3$, M = 454.52,

white crystals, $0.3 \times 0.2 \times 0.2$ mm, monoclinic, space group $P2_1/n$ (no. 14), T = 223(2) K, a = 13.5378(9), b = 11.0197(7), c = 15.6155(10) Å, $\beta = 104.996(1)^{\circ}$, V = 2250.2(3) Å³, Z = 4, $D_c = 1.342$ g cm⁻³, F(000) = 928, μ (Mo- K_z) = 0.472 mm⁻¹, 9685 reflections collected with $1.8 < 0 < 26^{\circ}$; of these 4015 were independent; 342 parameters, refinements converge to $R_1 = 0.0413$, $wR_2 = 0.0893$ (for reflections with $I > 2\sigma(I)$), $R_1 = 0.0564$, $wR_2 = 0.0975$ (all data).

Data (Mo- K_z , $\lambda = 0.71073$ Å) were collected with a Siemens CCD (SMART). All observed reflections (2θ range: 4–52°) were used for determination of the unit cell parameters. The structures were solved by direct methods (SHELXTL PLUS [26]) and subsequent difference Fourier syntheses and refined by full-matrix least-squares on F^2 (SHELXTL PLUS [26]). Restrictions for **2a**: P, B, and C atoms anisotropic, H atoms located and refined isotropically. Restrictions for **6**: S, P, B, and C atoms anisotropic, H atoms located and refined isotropically. Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Fachinformationszentrum [27].

Acknowledgements—We gratefully acknowledge support from the Fonds der Chemischen Industrie. Chemetall has provided a generous donation of lithium alkyls.

REFERENCES

- 1. Hart, F. A. and Owen, D. W., *Inorg. Chim. Acta*, 1985, **103**, L1.
- Longato, B. and Bresadola, S., *Inorg. Chem.*, 1982, 21, 168.
- Bakun, A. V., Dokuchaev, Yu. P., Lapidis, I. I., Moskovskii, Yu. V., Skvortsov, I. M. and Antokin, B. G., USSR Pat., 402241.
- Hsu, M. T. S., Chen, T. S. and Riccitiello, S. R., J. Appl. Polym. Sci., 1991, 42, 851.
- 5. Hawthorne, M. F., Angew. Chem., 1993, 105, 997.
- Gelen, M., Bouhdid, A., Willem, R., Bregadze, V. I., Ermanson, L. V. and Tiekink, E. R. T., J. Organomet. Chem., 1995, 501, 277.
- Godovikov, N. N., Balema, V. P., Rys, E. G., Zhukovskiy, Yu. G., Sotchilina, E. E. and Moralev, S. N., *Bioorganicheskja khimija (Bioorganic Chemistry Russ.)*, 1993, 19, 1077.
- Metal Complexes in Cancer Chemotherapy, ed. B. K. Keppler, VCH, Weinheim, New York, 1993.

- Alexander, R. P. and Schroeder, H., *Inorg. Chem.*, 1963, 2, 1107.
- 10. Bregadze, V. J., Chem. Rev., 1992, 92, 209.
- Kasantsev, A. V., Zhubekova, M. N. and Zakharkin, L. I., *Zh. Obshch. Khim.*, 1971, **41**, 2027.
- 12. VARIAN VNMR SOFTWARE, Version 4.1 Revision C, SunOS[™] 4.1.2.
- Hitchcock, P. B., Lappert, M. F., Leung, W.-P. and Yin, P., J. Chem. Soc., Dalton Trans., 1995, 3925.
- Kimpton, B. R., McFarlane, W., Muir, A. S., Patel, P. G. and Bookham, J. L., *Polyhedron*, 1993, **12**, 2525.
- Nifant'ev, E. E., *Spektroskopie* ³¹*P*; MGPI, Moskau 1986, p. 149.
- Kivekäs, R., Teixidor, F., Viñas, C. and Nuñez, R., *Acta Cryst.*, 1995, C51, 1868.
- Hill, W. E., Rackley, B. G. and Silva-Trivino, L. M., *Inorg. Chim. Acta*, 1983, **75**, 51.
- Issleib, K. and Döll, G., Z. anorg. allg. Chem., 1963, 324, 259.
- Grossmann, G., Walther, B. and Gastrock-May, U., *Phosphorus and Sulfur*, 1981, 11, 259.
- 20. Corbridge, D. E. C., *Phosphorus. An Outline of its Chemistry, Biochemistry and Technology*, Elsevier, Amsterdam-New York, 1980.
- Teixidor, F., Viñas, C., Benakki, R., Kivekäs, R. and Sillanpää, R., *Inorg. Chem.*, 1997, 36, 1719.
- Kivekäs, R., Sillanpää, R., Teixidor, F., Viñas, C. and Nuñez, R., Acta Cryst., 1994, C50, 2027.
- Kivekäs, R., Sillanpää, R., Teixidor, F., Viñas, C., Nuñez, R. and Abad, M., *Acta Cryst.*, 1995, C51, 1864.
- 24. Wunderlich, H. and Wussow, H.-G., Z. Naturforsch., 1984, **39b**, 1581.
- Foreman, M. R. St. J., Slawin, A. M. Z. and Woollins, J. D., *J. Chem. Soc.*, *Chem. Commun.*, 1995, 2217.
- 26. SHELXTL PLUS, Siemens Analyt. X-ray Inst. Inc., 1990, XS: Program for Crystal Structure Solution, XL: Program for Crystal Structure Determination, XP: Interactiv Molecular Graphics.
- 27. Further details of the structure determination may be obtained upon request from the Fachinformationszentrum Karlsruhe, D-76344 Eggenstein-Leopoldshafen, Germany, giving reference to the depository number CSD 407662 (for **2a**) and CSD 408309 (for **6**), and citing the authors and this paper.
- Weidlein, J., Müller, U. and Dehnicke, K., Schwingungsfrequenzen I, G. Thieme Verlag, Stuttgart-New York, 1981.