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Summary: Reduction of (C6F5NHCH2CH2)2NMe with
LiAlH4 produces (3,4,5-C6H2F3NHCH2CH2)2NMe (H2[F3-
NMe]) in good yield. Reactions between H2[F3NMe]
and MCl4 (M ) Mo, W) in the presence of NEt3 yield
pseudooctahedral paramagnetic compounds of the type
[Et3NH]{[F3NMe]MCl3}. Treatment of [Et3NH]{[F3NMe]-
MoCl3} with 3 equiv of Me3CCH2MgCl produced five-
coordinate [F3NMe]Mo(CH2CMe3)(CCMe3), while treat-
ment with 3 equiv of Me3SiCH2MgCl produced five-
coordinate paramagnetic [F3NMe]Mo(CH2SiMe3)2. Upon
heating, [F3NMe]Mo(CH2SiMe3)2 is converted into dia-
magnetic {[F3NMe]Mo(CSiMe3)}2. Reactions between
[Et3NH]{[F3NMe]WCl3} and Me3CCH2MgCl or Me3-
SiCH2MgCl lead to five-coordinate diamagnetic com-
plexes of the type [F3NMe]W(CH2R)(CR), where R )
CMe3, SiMe3 respectively. X-ray studies confirmed the
structures of [F3NMe]Mo(CH2CMe3)(CCMe3) and {[F3-
NMe]Mo(CSiMe3)}2.

The chemistry of complexes that contain a triami-
doamine ligand has been under investigation in our
laboratories for the past few years.1-6 Although the
focus has been on dinitrogen reduction and functional-
ization by Mo complexes,7-10 we also had the oppor-
tunity to prepare and explore Mo(IV) or W(IV) alkyl
complexes.2,3,6 In the process we discovered an unusual
R,R-dehydrogenation reaction that converts a Mo(IV) or
W(IV) alkyl complex into an alkylidyne complex and
molecular hydrogen. This reaction is much more facile
for W than for Mo and in many cases takes place even
when â-hydride elimination or abstraction processes
would be plausible alternatives. We have turned to the
synthesis and study of diamidoamine complexes of
Mo and W, initially those that contain the [(C6F5NCH2-
CH2)2NMe]2- ligand,11 primarily in an effort to prepare
dinitrogen complexes in which the dinitrogen is more
sterically accessible and therefore could be more sus-

ceptible to new modes of functionalization. Recent evi-
dence that this is the case for V and Ta consists of
reports that describe reductive cleavage of dinitrogen
between two vanadium centers12 and the reaction
between dinitrogen and a tantalum hydride to give a
bridging dinitrogen unit that is bound both side-on and
end-on.13 The fact that the reaction between (C6F5-
NHCH2CH2)2NMe and Mo(NMe2)4 led to seven-coordi-
nate [(C6F4(NMe2)NCH2CH2)2NMe]MoF2 rather than
five-coordinate [(C6F5NCH2CH2)2NMe]Mo(NMe2)2 sug-
gested to us that the chemistry of complexes that
contain the [(C6F5NCH2CH2)2NMe]2- ligand ultimately
might be limited by undesirable nucleophilic attack on
the pentafluorophenyl ring.11 Here we report the syn-
thesis and characterization of Mo and W complexes that
contain the apparently more robust [(3,4,5-C6H2F3-
NCH2CH2)2NMe]2- ligand and some reactions that
suggest that R,R-dehydrogenation reactions can be
found in environments outside of the triamidoamine
platform.

In a recent publication14 the transformation of pen-
tafluorophenyl rings bound to nitrogen into what were
proposed to be 2,4,6-C6H2F3 rings with LiAlH4 in
refluxing THF was reported.15 In the belief that 2,4,6-
C6H2F3 rings might be less susceptible to nucleophilic
attack, we attempted a similar reaction between (C6F5-
NHCH2CH2)2NMe and LiAlH4.16 We were gratified to
find that (C6H2F3NHCH2CH2)2NMe was indeed formed
in good yield but surprised to learn through X-ray
studies of compounds described below that the product
was (3,4,5-C6H2F3NHCH2CH2)2NMe, not (2,4,6-C6H2F3-
NHCH2CH2)2NMe (eq 1). This outcome may be the more

desirable of the two, as the reaction between H2[F3NMe]
and Mo(NMe2)4 was found to yield stable five-coordinate
diamagnetic [F3NMe]Mo(NMe2)2 as a red-brown powder,
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in contrast to activation of the ortho fluorides in (C6F5-
NHCH2CH2)2NMe upon reaction with Mo(NMe2)4.11

The reaction between MoCl4(THF)2, H2[F3NMe], and
NEt3 in THF led to a paramagnetic purple product
formulated as [Et3NH]{[F3NMe]MoCl3} on the basis of
19F and 1H NMR spectra and elemental analysis (eq 2).

This reaction is analogous to the synthesis of [Et3NH]-
{[(C6F5NCH2CH2)2NMe]MoCl3};11 it proceeds in good
yield despite the fact that there are only three fluorides
on each of the ligand aryl rings. Cation exchange with
Bu4NCl produced a more soluble tetrabutylammonium
salt. The magnetic moment of [Bu4N]{[F3NMe]MoCl3}
was determined by the Evans method17 as modified by
Sur18 to be 3.1 µB, slightly higher than the spin-only
value for two unpaired electrons (2.83 µB).

A reaction similar to that shown in eq 2 between
WCl4(dme), H2[F3NMe], and NEt3 in diethyl ether
produced [Et3NH]{[F3NMe]WCl3}. A tetrabutylammo-
nium salt was prepared in the same manner as de-
scribed above for [Bu4N]{[F3NMe]MoCl3}. A measure-
ment of the magnetic moment of [Bu4N]{[F3NMe]WCl3}
by the Evans method gave µeff ) 2.7 µB.

Addition of 3 equiv of Me3CCH2MgCl to [Et3NH]{[F3-
NMe]MoCl3} in THF yielded [F3NMe]Mo(CH2CMe3)-
(CCMe3) as an amber crystalline solid in 68% yield.19

The alkylidyne carbon resonance was located at 308
ppm in the 13C NMR spectrum. An X-ray diffraction
study revealed the complex to be approximately a tri-
gonal bipyramid with the neopentylidyne ligand occupy-
ing an axial position trans to the amine donor (Figure
1). All bond lengths and angles are in the expected
range. Note that the aryl rings contain fluorides in the
3-, 4-, and 5-positions. We hypothesize that this species
arises via R,R-dehydrogenation of transient [F3NMe]Mo-
(CH2CMe3)2 (eq 3). The ease of R,R-dehydrogenation in

[F3NMe]Mo(CH2CMe3)2 stands in contrast to that pro-
cess in isolable Mo(IV) neopentyl complexes containing
the [(Me3SiNCH2CH2)3N]3- and [(C6F5NCH2CH2)3N]3-

ligands, which are converted to the corresponding
neopentylidyne complexes at appreciable rates only
when heated.2,3 An unusual feature of R,R-dehydroge-
nation in [F3NMe]Mo(CH2CMe3)2 is that dihydrogen

rather than neopentane is formed, although the im-
mediate product upon loss of neopentane would be what
is perhaps a relatively disfavored Mo(IV) neopentylidene
complex. A minor byproduct isolated from this alkyla-
tion reaction (<5% yield) was {[F3NMe]Mo(CH2CMe3)}2-
(µ-N2), as revealed in an X-ray crystallographic study.
We believe that this product most likely arises via
reduction of the intermediate [F3NMe]Mo(CH2CMe3)-
Cl and capture of dinitrogen by “[F3NMe]Mo(CH2-
CMe3).” Synthesis and characterization of {[F3NMe]Mo-
(CH2CMe3)}2(µ-N2) will be reported fully elsewhere
when a more reliable and high-yield route to it is found.

In contrast to the result shown in eq 3, addition of 3
equiv of Me3SiCH2MgCl to a THF solution of [Et3NH]-
{[F3NMe]MoCl3} led to paramagnetic purple [F3NMe]-
Mo(CH2SiMe3)2. Resonances corresponding to two dif-
ferent trimethylsilyl proton environments were observed
in the 1H NMR spectrum at 3.6 and 1.2 ppm, despite
the paramagnetism of the complex (µeff ) 3.1 µB). A
bridging dinitrogen complex was isolated in low yield
in this case also, as will be reported elsewhere. Heating
a benzene solution of [F3NMe]Mo(CH2SiMe3)2 at 62 °C
for 24 h caused conversion to a bright red diamagnetic
product, an X-ray diffraction study of which revealed it
to be {[F3NMe]Mo(CSiMe3)}2 (Figure 2). This compound
has only slightly different Mo-C bond lengths of
2.203(10) and 2.141(8) Å but an essentially linear alkyl-
idyne ligand (Mo(1A)-C(1)-Si(1) ) 177.9(6)°). An alkyl-
idyne carbon resonance was located at 409 ppm in the
13C NMR spectrum. Tungsten compounds that contain
the W2(µ-CSiMe3)2 core were discovered in 1976,20,21 and
a variety of studies have been published since then.22-29
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H2[F3NMe] + MoCl4(THF)298
2.2 NEt3,THF

22 °C, 1 h

[Et3NH]{[F3NMe]MoCl3} (2)

Figure 1. Thermal ellipsoid plot (30% probability level)
of the structure of [F3NMe]Mo(CH2CMe3)(CCMe3). Selected
bond distances (Å) and angles (deg): Mo-C(1) ) 1.776(3),
Mo-C(6) ) 2.143(3), Mo-N(1) ) 2.042(2), Mo-N(2) )
2.392(2); N(1)-Mo-N(3) ) 126.43(9), C(6)-Mo-N(1) )
112.67(11), C(1)-Mo-N(2) ) 170.66(10), C(2)-C(1)-Mo )
173.0(2), C(7)-C(6)-Mo ) 129.7(2). Crystal data: C27H35F6-
N3Mo, monoclinic, P21/n, Z ) 4, a ) 12.5977(9) Å, b )
14.7520(11) Å, c ) 15.0992(11) Å, â ) 98.1530(10)°, R1 )
0.0294, wR2 ) 0.0812 (all data).
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core are rare.30 To our knowledge there is no published
example of a compound that contains the Mo2(µ-CR)2
core or any compound that contains a W2(µ-CSiMe3)2
core in which the W(1)-C-Si and W(2)-C-Si angles
are not approximately equal. Therefore, at this stage
we do not know whether the linear form of the µ-CSiMe3
ligands found in {[F3NMe]Mo(CSiMe3)}2 is a character-
istic of Mo2(µ-CR)2 compounds or a feature of M2(µ-CR)2
compounds (M ) Mo, W) that contain a diamido/donor
ligand. The different modes of decomposition of [F3NMe]-
Mo(CH2SiMe3)2 and the proposed intermediate [F3NMe]-
Mo(CH2CMe3)2 are striking.

Treatment of [Et3NH]{[F3NMe]WCl3} with 3 equiv of
either Me3CCH2MgCl or Me3SiCH2MgCl yielded five-
coordinate diamagnetic alkylidyne complexes of the type
[F3NMe]W(CH2R)(CR) (R ) CMe3 or SiMe3, eq 4). The

alkylidyne carbon atom resonances were located at 296
ppm in the neopentylidyne complex and 337 ppm in the
(trimethylsilyl)methylidyne complex. Apparently the
R,R-dehydrogenation reaction, which is known to be
much faster for W than Mo in triamidoamine alkyl com-
plexes,2,6 becomes the dominant reaction pathway in
both [F3NMe]W(CH2CMe3)2 and [F3NMe]W(CH2SiMe3)2.

We conclude that the [(3,4,5-C6H2F3NCH2CH2)2-
NMe]2- ligand has significant potential in terms of
developing the chemistry of middle oxidation states of
Mo and W, because starting materials can be prepared
readily and because the [(3,4,5-C6H2F3NCH2CH2)2-
NMe]2- ligand appears to be less susceptible to nucleo-
philic attack than the pentafluorophenyl ring in the
[(C6F5NCH2CH2)2NMe]2- ligand. We are interested in
elucidating the mechanisms of the organometallic reac-
tions reported here and determining to what extent
chemistry at the R-carbon can be distinguished from
chemistry at the â-carbon in alkyls that contain â-pro-
tons. We also are interested in developing high-yield
routes to species that contain bound dinitrogen in order
to further explore the chemistry of [(3,4,5-C6H2F3NCH2-
CH2)2NMe]2- complexes with respect to dinitrogen
fixation. Although a variety of complexes that contain
“diamido/donor” ligands have been reported by other
laboratories,12,31-47 those reported in this work and in
a previous communication11 appear to be the only ones
so far that contain Mo or W.
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(33) Guérin, F.; Del Vecchio, G.; McConville, D. H. Polyhedron 1998,
17, 917.
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Figure 2. Thermal ellipsoid plot (30% probability level)
of the structure of {[F3NMe]Mo(CSiMe3)}2 (ligand backbone
and aryl rings omitted for clarity). Selected bond distances
(Å) and angles (deg): Mo(1)-C(1) ) 2.203(10), Mo(1)-
C(1A) ) 2.141(8), Mo(1)-Mo(1A) ) 2.4152(15), Mo(1)-N(1)
) 2.055(7), Mo(1)-N(2) ) 2.306(7), Mo(1)-N(3) ) 2.093(7);
N(1)-Mo(1)-N(3) ) 127.3(3), C(1)-Mo-N(1) ) 93.1(3),
C(1A)-Mo(1)-N(1) ) 109.9(3), C(1)-Mo(1)-C(1A) )
112.5(3), C(1)-Mo(1)-N(2) ) 161.5(3), C(1A)-Mo(1)-N(2)
) 86.0(3), Si(1)-C(1)-Mo(1) 114.1(4), Si(1)-C(1)-Mo(1A)
) 177.9(6). Crystal data: C42H48N6F12Si2Mo2, monoclinic,
P21/c, Z ) 2, a ) 10.818(2) Å, b ) 16.850(3) Å, c ) 14.216(2)
Å, â ) 104.610(3)°, R1 ) 0.0650, wR2 ) 0.1425 (all data).

[Et3NH]{[F3NMe]WCl3}98
3RCH2MgCl

THF,
-30 to 22 °C

[F3NMe]W(CH2R)(CR)
R ) CMe3, SiMe3

(4)
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