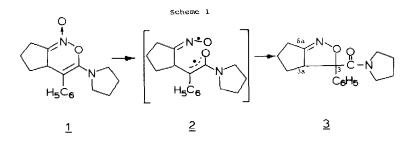
(4+2)-CYCLOADDITION OF NITROALKENES WITH YNAMINES; FORMATION OF A 4H-1,2-OXAZINE 2-OXIDE DERIVATIVE

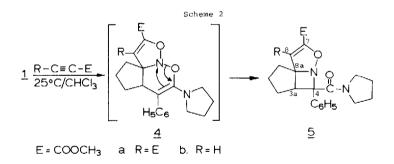

M.L.M. Pennings and D.N. Reinhoudt*

(Laboratory of Organic Chemistry, Twente University of Technology, Enschede, The Netherlands)

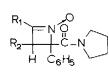
<u>Abstract</u>: The formation of a thermally unstable (4+2)-cycloadduct, a 4H-1, 2-oxasine <u>2-oxide</u> derivative (<u>1</u>), from the reaction of 1-nitrocyclopentene with 1-phenyl-2-(1-pyrrolidinyl)acetylene has been proven by the structure elucidation of isoxazole derivative <u>3</u> which results from thermal rearrangement and by the structure determination of the 1,3-dipolar adducts <u>5</u> of <u>1</u> with electron-deficient acetylenes.

Although the formation of 4H-1,2-oxazine 2-oxides has been reported by Stetter and Hoehne¹, the proposed structure was after a period of confusion^{2,3} proven to be incorrect by an X-ray analysis⁴. The only six-membered cyclic nitronic esters that are known are 5,6-dihydro-4H-1,2-oxazine 2-oxides^{5,6}. In this paper we describe such a hitherto unknown 4H-1,2-oxazine 2-oxide derivative from the reaction of 1nitrocyclopentene with 1-phenyl-2-(1-pyrrolidinyl)acetylene. Contrary to Nielsen and Archibald⁵ who have stated that an ynamine failed to react with 1-phenyl-2nitropropene, we have recently found that nitroalkenes undergo a facile reaction with ynamines to yield both 3-nitrocyclobutenes and nitrones^{7,8}. The formation of the nitrones was accounted for by a two-step process: (4+2)-cycloaddition to yield a 4H-1,2-oxazine 2-oxide and subsequent ring contraction⁹.

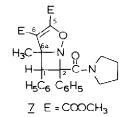
1-Nitrocyclopentene and 1-phenyl-2-(1-pyrrolidinyl)acetylene react in light petroleum at room temperature to yield in addition to a nitrobicyclo[3.2.0]hept-6-ene another 1:1 reaction product (35%, MS: M^+ 284.15 ($C_{17}H_{20}N_2O_2$). IR(KBr): 1640 cm⁻¹ (C=N and C=C). UV: λ_{max} 230 nm)¹⁰. Attempts to purify the crude product failed because of its thermal instability. Even in the crystalline state or in chloroform solution at room temperature it isomerises almost quantitatively to 3-phenyl-3-(1-pyrrolidinylcarbonyl)-3a,4,5,6-tetrahydro-3*H*-cyclopent[*c*]isoxazole 3 (scheme 1),

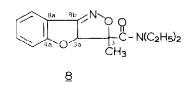

1781

m.p. 109.5-110.5°C (white crystals from light petroleum). MS: M^+ 284.15 (C₁₇H₂₀


 M_2O_2). IR(KBr): 1640 cm⁻¹ (C=N and C=0). ¹H NMR δ (CDCl₃): 2.6-2.9 and 3.2-3.6 (m,4H,CH₂-N), 4.91 (dd,J₁ 11Hz,J₂ 8Hz,1H,H-3a), 7.2-7.5 (m,5H,H_{arom}) ppm. ¹³C NMR data of <u>3</u> were compared with those of N,N-diethyl-3,3a-dihydro-3-methylbenzofuro [3,2-*c*]isoxazole-3-carboxamide <u>8</u>, which was obtained from the reaction of 3-nitrobenzo[*b*]furan with 1-diethylaminopropyne (see table); the structure of <u>8</u> was elucidated by X-ray analysis¹¹.

The formation of <u>3</u> can be explained, assuming the initial product of the reaction between 1-nitrocyclopentene and 1-pheny1-2-(1-pyrrolidiny1)acetylene is the 4H-1,2-oxazine 2-oxide derivative <u>1</u>. Homolytic cleavage of the weak N-O bond in <u>1</u> gives the diradical <u>2</u>. Similar diradicals react further by the formation of a C-N bond to give 2,3-dihydro-azete 1-oxides like <u>6a</u>⁷. However in the case of the fused 4H-1,2-oxazine 2-oxide derivative <u>1</u>, this would lead to the nitrone <u>6b</u> which has a bridgehead sp²-hybridized carbon atom in a four-membered ring. Consequently <u>2</u> reacts by formation of a C-O bond to yield the isoxazole derivative <u>3</u> (see also ref. 11).


Further support for structure <u>1</u> has been obtained from the identification of the reaction products of the 1,3-dipolar additions¹² of <u>1</u> with electron-deficient acetylenes. Reaction of <u>1</u> with dimethyl acetylenedicarboxylate or methyl propiolate in chloroform solution at room temperature afforded the cycloadducts <u>5</u> (scheme 2)¹³.



Since the bridgehead carbon atom in the intermediates $\underline{4}$ is no longer sp²-hybridized, ring contraction to $\underline{5}$ no longer leads to the formation of an anti-Bredt type of compound like $\underline{6b}$. The tricyclic products $\underline{5a}$ and $\underline{5b}$ were obtained as white solids in 83 and 85% yield respectively; $\underline{5a}$: m.p. $140-142^{\circ}C$ (from benzene/hexane). MS: M⁺ 426.18 (C₂₃H₂₆N₂O₆). IR(KBr): 1755 and 1715 cm⁻¹ (COOCH₃), 1640 and 1660 cm⁻¹ (C=C and C=O). ¹H NMR δ (CDCl₃): 3.1-3.6 (m,4H,CH₂-N), 3.76 and 3.88 (s,3H, O-CH₃), 4,66 (dd,J₁8Hz,J₂1Hz,1H,H-3a), 6.7-7.0 (m,1H,o-H_{arom}), 7.1-7.5 (m,3H, H_{arom}), 7.8-8.1 (m,1H,o-H_{arom})ppm. $\underline{5b}$: m.p. 124-126^oC (from light petroleum). MS: M⁺ 368.17 (C₂₁H₂₄N₂O₄). IR(KBr): 1730 cm⁻¹ (COOCH₃) and 1630 cm⁻¹ (C=C and C=O). ¹H NMR δ (CDCl₃): 3.2-3.6 (m,4H,CH₂-N), 3.80 (s,3H,O-CH₃), 6.00 (s,1H,H-8), 6.7-7.0 (m,1H,o-H_{arom}), 7.1-7.6 (m,3H,H_{arom}), 7.9-8.2 (m,1H,o-H_{arom})ppm. The formation of 5a and 5b occurs stereospecifically and from the nonequivalence of the orthophenyl protons in the ¹H NMR spectra can be concluded, that the phenyl ring and the cyclopentane ring are on the same side of the azetidine ring. A molecular model shows that in this configuration of 5 the rotation around the $C_{6}H_{5}$ -C-4 bond is restricted. The structures of 5a and 5b were also confirmed by comparison of the ¹³C NMR data of 5a and 5b with those of dimethyl 1,6a-dihydro-1,2-diphenyl-6a-methyl-2-(1-pyrrolidinylcarbonyl)-2H-azeto[1,2-b]isoxazole-5,6-dicarboxylate 7 (see table). For this purpose compound 7 has been prepared by 1,3-dipolar addition of dimethyl acetylenedicarboxylate with the cyclic nitrone $6a^{7}$. After 18 hours stirring in chloroform solution at room temperature, 7 was isolated as a white solid, m.p. 142-144^oC. MS: M⁴ 476.19 (C₂₇H₂₈N₂O₆). IR(KBr): 1755 and 1715 cm⁻¹ (COOCH₃), 1650 cm⁻¹ (C=0 and C=C). ¹H NMR & (CDCl₃): 1.25 (s,3H,CH₃), 3,58 and 3.79 (s,3H,O-CH₃), 5.19 (s,1H,H-1), 7.1-7.9 (m,10H,H_{arom}) ppm.

<u>6</u> <u>a</u> $R_1 = CH_3, R_2 = C_6H_5$ b $R_1R_2 = (CH_2)_3$

Characteristic 13 C NMR absorptions of compounds $3, 5a, 5b, 7$ and 8								
3		8		<u>5a</u>	<u>5b</u>		7	
94.4	C-3	94.6	C-3	153.3	147.1	C-7	152.9	C-5
63.2	C-3a	96.6	C-3a	110.1	112.4	C-8	115.4	C-6
167.4	C-6a	167.3	C-8b	82.1	81.4	C-8a	76.5	C-6a
171.2	C=O	169.8	C=0	50.9	51.9	C-3a	51.6	C-1
				84.7	85.1	C-4	82.6	C-2
				165.5	166.5	∑n-c=o	167.7	>n−c=0
				161.8	158.6	-0-C=0	162,1	-0-C=0
				159.1		-0-C=0	158.1	-0-C=0

Table

All chemical shifts were recorded in deuteriochloroform with TMS as internal standard (δ in ppm)

<u>Acknowledgement</u>. This investigation was supported by the Netherlands Foundation for Chemical Research (SON) with financial aid from the Netherlands Organization for Advancement of Pure Research (ZWO).

References and notes

- 1. H. Stetter and K. Hoehne, Chem. Ber., 91, 1344 (1958).
- 2. A.T. Nielsen and T.G. Archibald, Tetrahedron, 25, 2393 (1969).
- H.O. Larson, T.-C. Ooi, A.K.Q. Siu, K.H. Hollenbeak and F.L. Cue, <u>Tetrahe-</u> <u>dron</u>, <u>25</u>, 4005 (1969).
- 4. G.B. Ansell, D.W. Moore and A.T. Nielsen, J. Chem. Soc. (B), 1971, 2376.
- 5. A.T. Nielsen and T.G. Archibald, <u>Tetrahedron</u>, <u>26</u>, 3475 (1970).
- 6. G. Pitacco and E. Valentin, Tetrahedron Lett., 1978, 2339
- 7. A.D. de Wit, M.L.M. Pennings, W.P. Trompenaars, D.N. Reinhoudt, S. Harkema and O. Nevestveit, J. Chem. Soc. Chem. Commun., 1979, 993.
- D.N. Reinhoudt and C.G. Kouwenhoven, <u>Recl. Trav. Chim. Pays Bas</u>, <u>95</u>, 67 (1976).
- 9. In our first paper⁸ the formation of N-heteroaryl-C-carbamoyl nitrones was attributed to a two-step process involving a (2+2)-cycloaddition of the ynamine to the N=O bond of the nitro group.
- 10. Dilute solutions of this product were studied by ¹H and ¹³C NMR spectroscopy, but the presence of radical species made this impossible. In the case of ¹³C NMR only minor amounts of rearranged product 3 could be traced.
- 11. See preceeding paper.
- 12. A.T. Nielsen in 'The Chemistry of the nitro and nitroso groups', ed. H. Feuer, J. Wiley & Sons, New York, 1969; part I, p. 349.
- 13. The isoxazole derivative <u>3</u> failed to react with dimethyl acetylenedicarboxylate under the same reaction conditions.

(Received in UK 4 March 1980)