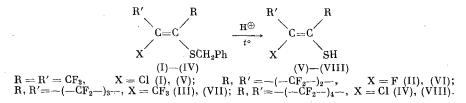
LITERATURE CITED

- 1. Yu. V. Zeifman, E. M. Rokhlin, U. Utebaev, and I. L. Knunyants, Dokl. Akad. Nauk SSSR, 226, 1337 (1976).
- 2. U. Utebaev, Dissertation, Institute of Heteroorganic Compounds, Academy of Sciences of the USSR, Moscow (1975).
- 3. E. N. Prilezhaeva, The Prilezhaev Reaction. Electrophilic Oxidation [in Russian], Nauka, Moscow (1974).
- 4. R. G. Makitra and Ya. I. Pirig, Zh. Fiz. Khim., 52, 785 (1978).
- 5. J. Skerjanc, A. Regent, and B. Plesničar, Chem. Commun., 1007 (1980).
- 6. U. Utebaev, E. M. Rokhlin, and É. P. Lur'e, Izv. Akad. Nauk SSSR, Ser. Khim., 142 (1976).
- 7. A. A. Kadyrov, E. M. Rokhlin, and I. L. Knunyants, Izv. Akad. Nauk SSSR, Ser. Khim., 2653 (1981).
- G. S. Bylina, U. M. Dzhemilev, N. S. Vostrikov, G. A. Tolstikov, A. M. Moiseenkov, A. V. Semenovskii, and S. S. Shabanov, Izv. Akad. Nauk SSSR, Ser. Khim., 447 (1978).
- 9. A. A. Kadyrov and E. M. Rokhlin, Izv. Akad. Nauk SSSR, Ser. Khim., 2583 (1981).
- 10. W. J. Middleton and W. H. Sharkey, J. Org. Chem., 30, 1384 (1965).

FLUORINATED ENETHIOLS*

R. A. Bekker, V. Ya. Popkova, and I. L. Knunyants

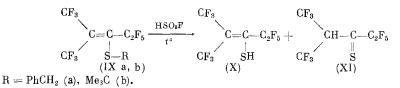
The closest analog of the well-studied keto-enol system is the enethiol-thione system. However, studies of prototropy in the latter system are extremely difficult [3-6] as a result of the instability of both forms, and their liability to undergo interconversion both in the presence of a variety of reagents, and also spontaneously, with the consequence that studies of this problem contain numerous contradictions and erroneous data [7].


UDC 542.91:547.367'161

The introduction of fluorine atoms and perfluoroalkyl groups usually confers high kinetic stability on unstable enols [8], and it was therefore to be expected that perfluorinated enethiols would be more stable, and hence more convenient for study.

Perfluorinated enethiols have hitherto been unknown. Radical addition of H_2S to acetylenes [9] affords only hydrogen-containing analogs, which polymerize on storage. Their conversion into the corresponding thiocarbonyl compounds was not reported in [9].

 $\begin{array}{c} R-C \equiv C-R'+H_2S \rightarrow RCH = C-R' \\ & | \\ R=R'=CF_3 \ (a) \ R=CF_3, \ R'=H \ (b). \end{array}$


We have developed a general method for the preparation of perfluorinated enethiols of the aliphatic and alicyclic series which involves heating perfluoroalkenyl(cycloalkenyl) benzyl sulfides with fluorosulfuric or sulfuric acid, with the simultaneous removal of volatile products. Thus, enethiols (I)-(IV) affords the enethiols (V)-(VIII), which are stable compounds which remain unchanged on storage

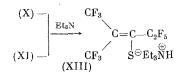
Acid hydrolysis of benzyl or tert-butyl perfluoro(l-ethyl-2-methyl-1-propenyl) sulfide (IXa, b) under similar conditions gives a mixture consisting of the enethiol (X) (86.3%) and *For previous communications, see [1, 2].

A. N. Nesmeyanov Institute of Heteroorganic Compounds, Academy of Sciences of the USSR, Moscow. Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 10, pp. 2347-2354. October, 1982. Original article submitted February 9, 1982.

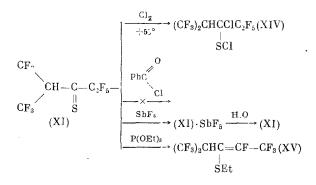
2066

This mixture is not in equilibrium. Distillation afforded the pure enethiol (X), which is a colorless compound, stable on keeping.

The enethiol (X) was converted into the thicketone (XI) by heating in a glass ampul for 20 h at 150° C, and by treatment with acids (boiling for 40 min in the presence of $HSO_{3}F$) or weak bases (Et₂0, Et₃N·BF₃). The thicketone (XI) is a stable, deep blue compound

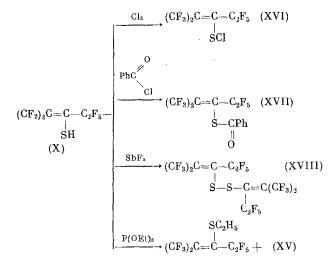


In the reaction involving proton transfer catalyzed by bases, in addition to (XI) the adduct (XII) was isolated. This was formed by addition of the enethiol form (X) to the thioketone (XI)

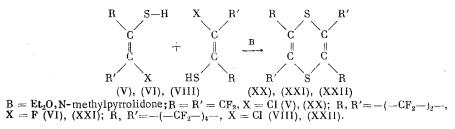

$$\begin{array}{c} C_2F_5 \quad C_2F_5 \\ (X) \xrightarrow{B} (XI) + (CF_8)_2C = C - S - C - CH(CF_3)_2 \\ & SH \\ SH \\ (XII) \end{array}$$

$$B = Et_2O; Et_3N \cdot BE_3.$$

The powerful base Et₃N detaches a proton from both forms to give the triethylammonium salt (XIII), which according to ¹⁹F NMR has the enethiol structure



With the exception of the abovementioned reaction, the enethiol (X) and the thioketone (XI) differ sharply in their reactivities. Thus, the thioketone (XI) readily adds chlorine at the C=S double bond, does not react with benzoyl chloride at temperatures up to 160°C, reacts with SbF₅ to give a bright-yellow complex which on hydrolysis affords the original thioketone (XI), and reacts with triethyl phosphite like its oxygen analogs [10] to give the sulfide (XV)



In contrast, the enethiol (X) undergoes chlorination to give the unsaturated sulfenyl chloride (XVI), on heating with benzoyl chloride it is benzoylated at the S atom, is oxidized by SbF_5 to the corresponding disulfide (XVIII), and gives with triethyl phosphite a mixture of sulfides (XIX) (68%) and (XV) (32%) (see Scheme at top of next page).

The formation of (XV) is readily explained in terms of the basic properties of triethyl phosphite, which causes partial isomerization of the enethiol (X) to the thicketone (XI), and reacts with the latter, as already noted, to give the sulfide (XV). These results show that perfluorinated enethiols are not in tautomeric equilibrium with the corresponding thicketones.

The irreversible isomerization of the enethiol (X) to the thicketone (XI) shows that the latter has the greatest thermodynamic stability. Enethiols (V), (VI), and (VIII), which carry a halogen atom at the double bond, could not be converted into the thicketones. These compounds are stable to acids, and on treatment with basic reagents they undergo cyclization to p-dithiines as a result of a competitive nucleophilic replacement reaction

Sulfides (1)-(IV) and (IX) were obtained by reaction of benzyl mercaptan with the corresponding olefins in the presence of Et_3N .

EXPERIMENTAL

¹⁹F NMR and ¹H spectra were recorded on a Perkin-Elmer R-32 spectrometer (84.6 and 90 MHz, respectively), from the external standards CF_3CO_2H and TMS. IR spectra were obtained on a UR-20 spectrophotometer, and Raman spectra on a Ramanor HG-2S instrument, excitation being provided by the 5145 Å line of a CR-8 laser, power 100 mW. The UV spectrum was recorded on a Hitachi instrument. The purity of the compounds was checked by GLC on a LKhM-8MD apparatus (model 3), column with 20% QF on Chromaton. Mass spectra were obtained on a Varian MAT CH-8 apparatus (ionizing electron energy 70 eV), m/z and suggested assignments being given. For the purification of compounds by preparative GLC, a Perkin-Elmer F-21 instrument was used. Column 5 m × 20 mm, 20% QF on Chromaton. The ¹⁹F NMR spectra of (II)-(VIII) are given in Table 1, and of (IX), (X), (XIII), (XIII), and (XVI)-(XIX) in Table 2.

<u>l-Benzylthio-3-chloroperfluoro-2-butene (I).</u> To a solution of 15.1 g of 2-chloroperfluoro-2-butene [11] in 150 ml of dry ether, cooled to 0°C, was added slowly with stirring a mixture of 8.7 g of benzyl mercaptan and 7.1 g of Et₃N. The reaction mixture was kept for 1 h at 0°C, warmed to 10°C, and poured into water. The organic layer was separated, dried over MgSO₄, and distilled to give 11.9 g (53%) of (I), bp 60-72°C (1 mm). Found: C 41.48; H 2.30; F 36.06; S 9.68%. $C_{1,1H_7}ClF_6S$. Calculated: C 41.20; H 2.20; F 35.55; S 9.999%. ^{1°}F NMR spectrum (δ , ppm, J, Hz): -20.9 q (CF³₃); -17.8 q (CF²₃); $J_{CF^3_3}-CF^2_3$ = 13.2 (cis-isomer); -18.2 m (CF¹₃); -17.1 m (CF²₃); $J_{CF^3_3}-CF^2_3$ < 1.8 (trans isomer).

<u>1-Benzylthioperfluoro-1-cyclobutene (II)</u>. To a solution of 27.2 g of perfluorocyclobutene in 150 ml of ether was added with stirring (-3 to -5°C), dropwise, a mixture of 19.1 g of benzyl mercaptan and 15.9 g of Et₃N. The mixture was warmed to \sim 20°C, washed with water, and the ether layer dried over MgSO₄ and distilled to give 20.5 g (41.0%) of (II), bp 78°C (2 mm). Found: C 49.53; H 2.65; F 35.54; S 11.87%. C₁₁H₇F₅S. Calculated: C 49.62; H 2.63; F 35.71; S 12.03%. PMR spectrum (δ , ppm): 3.7 s (CH₂), 6.9 s (Ph). IR spectrum (ν , cm⁻¹): 1678 (C=C).

TABLE 1. ¹⁹F NMR Spectra of Compounds with the General Formula (δ , ppm; J, Hz) (CF₂)_n

Х	C=	≃ C-	-SR				

Com- pound	n	R	x	δCF₂¹	$\delta \mathrm{CF}_{2}^{2}$	$\delta CF_{2}{}^{3}$	ðCF₂⁴	δX
(II) (VI) (III) (VII) (IV) (VIII)	$2 \\ 2 \\ 3 \\ 3 \\ 4 \\ 4$	$\begin{array}{c} PhCH_2\\ H\\ PhCH_2\\ H\\ PhCH_2\\ H\\ PhCH_2\\ H\end{array}$	F F CF ₃ CF ₃ Cl Cl	36,6 m 36,6 m 29,8 m 32,9 m 29.2 m 29,1 m	38,0 m 41,4 m 31,2 m 37,1 m 58,9 m 56,2 m	 53,0 m 54,6 m 58,9 m 56,2 m	 33,1 m 31,3 m	41,4t.t * 41,4 m -16,7 m -15,9 m

 $*J_{CF_2^1-F} = 18.8; F_{CF_2^2-F} = 6.6.$

<u>1-Benzylthioperfluoro-2-methyl-1-cyclopentene (III)</u>. To a mixture of 36.3 g of perfluoro-1-methyl-1-cyclopentene and 20.0 g of benzyl mercaptan in ether (150 ml) was added slowly 16.3 g of Et_3N , keeping the temperature at 20-25 °C. The mixture was stirred for a further 2 h, washed with water, dried over MgSO₄, and distilled to give 35.0 g (59.5%) of (III), bp 95-97°C (2 mm). Found: C 42.63; H 1.81; F 46.27; S 8.94%. C₁₃H₇F₉S. Calculated: C 42.63; H 1.92; F 46.68; S 8.75%.

<u>1-Benzylthio-2-chloroperfluoro-1-cyclohexene (IV).</u> a) A mixture of 22.3 g of 1,2-dichloroperfluoro-1-cyclohexene, 7.7 g of Et₃N, and 130 ml of dry ether was cooled to 0°C, and 9.7 g of benzyl mercaptan was added slowly with stirring under argon. The mixture was stirred for a further 1 h at 0°C, and kept for 15 h at ~ 20 °C. The mixture was then poured into water, extracted with ether, the ether extracts dried over MgSO₄, and distilled to give 11.2 g (38.7%) of (IV), bp 90-93°C (0.5 mm). Found: C 40.83; H 1.86; F 39.75; S 8.15%. C₁₃H₇ClF₈S. Calculated: C 40.80; H 1.84; F 39.72; S 8.38%. PMR spectrum (δ , ppm): 4.0 s (CH₂), 7.1 s (Ph).

b) To 6.9 g of 1-chloroperfluoro-l-cyclohexene, 2.5 g of Et_3N , and 60 ml of dry ether was added slowly under argon at 20°C 3.1 g of benzyl mercaptan. The mixture was stirred for 1 h, and worked up as in the preceding example to give 5.5 g (57.8%) of (IV).

<u>3-Chloroperfluoro-2-butene-2-thiol (V).</u> To 6.8 g of (I) in a distillation apparatus was added slowly from a dropping funnel 4 ml of freshly distilled HSO_3F . The mixture was heated with the flame of a burner, and the fraction boiling up to $110^{\circ}C$ was collected. This was distilled repeatedly to give 1.6 g (32.7%) of (V), bp 73-93°C. Found: C 20.27; H 0.51; F 49.11; S 13.54%. C₄HClF₆S. Calculated: C 20.84; H 0.44; F 49.44; S 13.91%. Raman spectrum

(v, cm⁻¹) 1590 (C=C), 2592, 2612 (SH of the cis and trans isomers

 $C_{F_3}^2$ S C_{F} S

trum (δ , ppm, J, Hz) -15.1 m (CF₃¹), -14.7 d.q. (CF₃²) J_{CF₃¹-CF₃² = 1.8; J_{CF₃²-H} = 5.4 (trans-isomers): -20.0 q (CF₃¹), -17.3 q (CF₃²), J_{CF₃¹-CF₃² = 13.2 (cis isomer). PMR spectrum (δ , ppm, J, Hz): 3.8 q (SH), J_{H-CF₃² = 5 (trans isomer), 4.1 s (SH) (cis-isomer).}}}

<u>Perfluoro-l-cyclobutene-l-thiol (VI)</u>. In a distillation apparatus were placed 4.4 g of (II) and 1 ml of freshly distilled HSO_3F . The mixture was heated with the flame of a burner, and the fraction boiling up to 80°C was collected in an ice-cooled receiver. Repeated distillation gave 0.76 g (28.8%) of (VI), bp 70-71°C. Found: C 27.16; H 0.57; F 53.52; S 18.13%. C₄HF₅S. Calculated: C 27.28; H 0.575; F 53.94; S 18.20%. IR spectrum (ν , cm⁻¹): 1695 (C=C); 2590 (SH). PMR spectrum (δ , ppm): 3.6 s (SH).

Perfluoro-2-methyl-1-cyclopentene-1-thiol (VII). In a distillation apparatus were placed 5.7 g of (III) and 3.6 ml of conc. H_2SO_4 . The mixture was heated with the flame of a burner, and the fraction boiling up to 120°C was collected. This was repeatedly distilled from its mixture with 3 ml of conc. H_2SO_4 to give 2.0 g (46.5%) of (VII), bp 100-101°C. Found: F 62.33; S 11.67%. C_6HF_9S. Calculated: F 61.93; S 11.61%. IR spectrum (v, cm⁻¹): 1635 (C=C), 2600 (SH). PMR spectrum (δ , ppm): 3.6 m (SH).

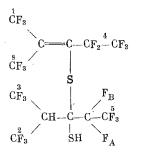
 $\frac{2-\text{Chloroperfluoro-l-cyclohexene-l-thiol (VIII).}}{\text{g of (IV) and 1.8 ml of conc. H}_2\text{SO}_4.} \text{ The mixture was heated with the flame of a burner,}$

(o, ppni, j, riz)								
Compound	R	δ1	δ_2	δ_3	δ4	J_{1-2}	J_{1-3}	J_{1-4}
(IXa) - (IXb) (X)	PhCH₂ Me₃C H ⊕	-20,6 t.q.q -20,0 m -20,6 t.q.q.	-17,3 q -20,0m -17,3q.d	-0,4 q -0,7 q 1,8q	25,8 q 24,9 q 26,9 q	9,4 	9,0 7,5 9,5	18.8 20,7 22,6
(X111) (XVI) (XVII)	HNEts Cl PhCO C ₂ F ₅ CFs	-26,4 t.q.q. -19,1 " -20,1 "	-20,2 q -17,0 q -16,9 q	1,8q 0,4q 1,0q	22,4 q 25,6 q 26,4 q	9,4 9,4 11,3	$5,6 \\ 9,4 \\ 9,4$	18,8 18,8 21,6
(XVIII)	-S-C=C	-19,1 m	-19,1 m	1,3 q	25,6 q	9,4	9,4	20,7
(XIX)	CF₃ Et	-20,0 t.q.q.	−16,2 q	0 q	26,2 q	9,4	9,4	17,9

and the fraction boiling up to 145° C was collected. To this was added 1.5 ml of H₂SO₄, and redistilled to give 2.2 g (66.3%) of (VIII), bp 134-137°C. The analytical sample was distilled once more. Found: C 24.81; H 0.36; F 51.85; S 10.80%. C₆HClF₈S. Calculated: C 24.63; H 0.34; F 51.95; S 10.96%. IR spectrum (v, cm⁻¹): 1610 (C=C), 2605 (SH). PMR spectrum (δ , ppm): 3.9 (SH).

<u>2-Trifluoromethyl-3-benzylthio-perfluoro-2-pentene (IXa)</u>. To a mixture of 17.9 g of perfluoro-2-methyl-2-pentene, 7.4 g of benzyl mercaptan, and 70 ml of dry ether, cooled to 0°C was added slowly with stirring 6.0 g of Et_3N , maintaining the temperature at 0°C. After this the mixture was poured into water, extracted with ether, and the ether extract was dried over MgSO₄ and distilled. There was obtained 16.0 g (65%) of (IXa), bp 72-75°C (2 mm) (cf. [12]).

<u>2-Trifluoromethyl-3-tert-butylthioperfluoro-2-pentene (IXb).</u> A mixture of 5.1 g of perfluoro-2-methyl-2-pentene, 1.6 g of tert-butyl mercaptan, 1.8 g of Et_3N , and 50 ml of dry ether was boiled for 4 h, then poured into water, the ether layer separated, dried over MgSO₄, and distilled to give 4.3 g (68.0%) of (IXb), bp 74°C (40 mm). Found: C 32.24; H 2.30; F 55.89; S 8.69%. C₁₀H₉F₁₁S. Calculated: C 32.43; H 2.43; F 56.48; S 8.64%. IR spectrum (ν , cm⁻¹): 1585 (C=C). PMR spectrum (δ , ppm); 1.3 s (Me).


Perfluoro-2-methyl-2-pentene-3-thiol (X). a) In a distillation apparatus were placed 5.0 g of (IXa) and 4.0 ml of freshly distilled HSO_3F . The mixture was heated with the flame of a burner, and the fraction boiling up to $110^{\circ}C$ was collected. A further distillation gave 3.2 g (82.2%) of a mixture bp 92-100°C, containing 86.3% of (X) and 13.7% of (XI). Redistillation gave (X), bp 101-102°C. Found: F 66.56; S 10.32%. C₆HF₁₁S. Calculated: F 66.53; S 10.21%. IR spectrum (ν , cm⁻¹): 1590 (C=C), 2640 (SH). PMR spectrum (δ , ppm): 3.9 q (SH).

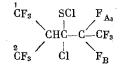
b) Obtained similarly, but by heating the reaction mixture under vacuum (80 mm), 6.7 g of (IXa) and 4.0 ml of freshly distilled HSO_3F afforded 3.7 g (70.5%) of nearly pure (X), bp 52-53°C (120 mm).

c) As in b), 2.0 g of (IXb) and 1 ml of freshly distilled HSO_3F under a vacuum of 115 mm gave 1.6 g (93%) of a mixture containing 88% of (X) and 12% of (XI).

Reaction of (X) with Et₂O, BF₃·NEt₃, and HSO₃F. a) To 8.0 g of (X) was added 0.2 ml of dry ether, the mixture kept for 2 h, and 10 ml of conc. H₂SO₄ added. The mixture was then distilled to give 5.2 g (65.2%) of (XI), bp 80-81°C and 2.6 g (31.8%) of the adduct (XII), bp 79°C (10mm). (XI): Found: C 22.86; H 0.20; F 66.41; S 10.25. C₆HF₁₁S. Calculated: C 22.94; H 0.32; F 66.53; S10.21%. IR spectrum (ν , cm⁻¹): 2994 (CH). ¹⁹F NMR spectrum (δ , ppm): -12.0m [(CF₃)₂], 4.9 m (CF₃), 35.4 m (CF₂). PMR spectrum (δ , ppm; J, Hz): 4.8 hept (CH), J_{(CH₃)₂-H = 7.0. UV spectrum (in hexane): λ_{max} 220; 305; 610 nm; $\varepsilon_{22.0}$ 4857; ε_{305} 36; ε_{610} 6. (XII): Found: C 23.07; H 0.25; F 66.81; S 10.14%. C₁₂H₂F₂₂S₂. Calculated: C 22.94; H 0.32; F 66.53; S 10.21%. IR spectrum (ν , cm⁻¹): 1610 (C=C), 3000 (CH) (see Scheme at top of next page).}

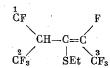
b) To 2.8 g of (X) was added 1.6 g of BF_3 *NEt₃. When the slightly exothermic reaction was complete, the product was transferred in a 5 mm vacuum to a trap cooled at -78°C. There was obtained 1.6 g (58.0%) of (XI), bp 80-81°C.

¹⁹F NMR spectrum (δ , ppm; J, Hz): -19.3 m (CF₃¹, CF₃³); -17.6 q.d.d.d. (CF₃²); -10.0 q.d. (CF₃³); 1.3 q (CF₃¹); 4.2 s (CF₃⁵); 24.5 q (CF₂); 36.0 (F_A); 37.8 (F_B); J_{CF₃¹-CF₂ = 19.7, J_{CF₃¹-CF₃⁴ = J_{CF₃²-CF₃³ = 9.4, J_{CF₃²-CF₃² = J_{CF₃²-F_A = J_{CF₃²-F_B = 9.4, J_{FA}-F_B = 276. PMR spectrum (δ , ppm): 3.9 t (SH), 3.4 hept (CH), J_{CH}-CF₃² = J_{CH}-CF₃³ = 7.6, J_H-F_A = J_{H-F_B} = 14.0 Hz.}}}}}}


c) The enethiol (X) was heated with freshly distilled HSO_3F in a flask under reflux. According to ¹⁹F NMR, after 40 min the (X) had been completely converted into the thicketone (XI).

d) Heating (X) in a glass ampul for 20 h at $150\,^{\circ}$ C gave a quantitative yield of the thioketone (XI) (according to ¹⁹F NMR).

Triethylammonium Enethiolate of Perfluoro-2-methyl-2-pentene-3-thiol (XIII). a) To 2.5 ml of dry Et₃N at -78° C was added dropwise 1.1 g of (X), the mixture warmed to $\sim 20^{\circ}$ C, and excess Et₃N removed in vacuo (4 mm). According to NMR, the residue (1.4 g, 91.5%) consisted of pure (XIII). PMR spectrum (δ , ppm; J, Hz): 1.2 t (Me), 2.9 q (CH₂), 12.8 br.s. (H), J_{Me-CH₂} = 7.0.


b) Similarly, from 1.5 ml of dry Et_3N and 0.4 g of (XI) there was obtained 0.6 g (99.9%) of (XIII).

2-Trifluoromethyl-2-hydro-3-chloroperfluoropentane-3-sulfenyl Chloride (XIV). In a steel autoclave were placed 3.1 g of (XI) and 3 ml of liquid Cl₂, and the mixture heated for 6 h at 50°C. Excess chlorine was then removed into a trap cooled to -78°C, and the residue was distilled to give 2.7 g (71.0%) of (XIV), bp 75-76°C (47 mm). Found: C 18.58; H 0.20; F 53.86; S 7.89%. C₆HCl₂F₁₁S. Calculated: C 18.72; H 0.26; F 54.28; S 8.33%. ¹⁹F NMR (ô, ppm; J, Hz): -20.1 m.

 (CF_3^1) ; -18.7 d.d q.d (CF_3^2) ; -2.2 s (CF_3^3) ; 22.2 (F_A) ; 31.1 (F_B) ; $J_{CF_3^2-F_A} = 26.3$, $J_{CF_3^2-F_B} = 17.9$, $J_{CF_3^2-CF_3^1} = 14.1$, $J_{CF_3^2-H} = 7$, $J_{F_A}-F_B = 280$. PMR spectrum (δ , ppm; J, Hz): 4.2 hept (CH), $J_{CF_3^2-H} = J_{CF_3^2-H} = 7$.

<u>3-Ethylthio-4-hydroperfluoro-4-methyl-2-pentene (XV)</u>. To 3.5 g of (XI), cooled to -78° C, was added dropwise 1.8 g of P(OEt)₃, the reaction mixture being periodically shaken. The mixture was then warmed to $\sim 20^{\circ}$ C, and gradually heated to 40° C, volatile products being removed under a vacuum of 2 mm to a trap cooled to -78° C. There was obtained 2.3 g of material containing (by GLC) 90% of (XV), bp 127-130°C. Found: C 28.83; H 1.79; F 58.8; S 10.21%. C₈H₆F₁₀S. Calculated: C 29.63; H 1.87; F 58.61; S 9.89%. IR spectrum (ν , cm⁻¹): 1650 (C=C).

¹⁹F NMR spectrum (δ , ppm; J, Hz): -13.3 d.m (CF₃¹, CF₃²), -12.7 d.m. (CF₃³), 24.0 q.m (F), J_{CF₃¹, CF₃² - H = JF-CF₃³ = 7.5. PMR spectrum (δ , ppm): 1.1 t (Me), 2.8 q (CH₂), 4.2 hept. m. (CH).}

<u>Complex of (XI) with SbF_5 .</u> To 5 ml of SbF_5 was added slowly with shaking in a flask 2.9 g of (XI), whereupon the thicketone (XI) was decolorized. The reaction mixture was bright

yellow in color, and contained no volatile products, since none were removed under a vacuum of 1 mm at ~ 20 °C. The mixture was poured into icewater, and the deep blue organic layer separated, dried over MgSO₄, and distilled to give 1.5 g (51.0%) of (XI).

Perfluoro-2-methyl-2-pentene-3-sulfenyl Chloride (XVI). Chlorine was passed through 2.3 g of (X), maintaining the temperature at $\sim 20^{\circ}$ C. Distillation afforded 1.8 g (72.0%) of (XVI), bp 67-68°C (120 mm). Found: C 20.74; F 59.99; S 9.12%. C₆ClF₁₁S. Calculated: C 20.67; F 59.96; S 9.197%. IR spectrum (ν , cm⁻¹): 1600 (C=C).

2-Trifluoromethyl-3-benzoylthioperfluoro-2-pentene (XVII). A mixture of 3.0 g of (X) and 1.3 g of benzoyl chloride was heated for 20 h at 120°C, then distilled to give 0.7 g of (XI), bp 80-81°C, and 0.9 g (30%) of (XVII), bp 110-111°C (8 mm). Found: C 37.67, H 1.13; F 49.84%. C₁₃H₅F₁₁OS. Calculated: C 37.33; H 1.20; F 49.97%. IR spectrum (ν , cm⁻¹): 1590, 1600 (C=C, Ph), 1710 (C=O). PMR spectrum (δ , ppm): 7.2 m (Ph).

Di(Perfluoro-1-ethyl-2-methyl-1-propenyl) Disulfide (XVIII). To 13.4 g of SbF₅, cooled to 10° C, was added dropwise, slowly, with stirring, 2.2 g of (X). The reaction mixture was warmed to $\sim 20^{\circ}$ C, poured into icewater, the organic layer separated, dried over MgSO₄, and distilled to give 0.8 g (36.5%) of (XVIII), bp 74-76°C (8 mm). Found: C 23.07; F 67.11; S 10.20%. C₁₂F₂₂S₂, Calculated: C 23.01; F 66.75; S 10.24%. IR spectrum (ν , cm⁻¹): 1600 (C=C).

 $\frac{2-\text{Trifluoromethyl}-3-\text{ethyl}\text{thioperfluoro}-2-\text{pentene (XIX) and (XV)}$. As for (XV), from 0.7 g of (EtO)₃P and 1.3 g of (X) there was obtained 1.0 g of a mixture containing (GLC and ¹⁹F NMR) 68% of (XIX) and 32% of (XV), bp 127-140°C.

2,3,5,6-Tetrakis(trifluoromethyl)-p-dithiine (XX). To 10 ml of N-methylpyrrolidone, cooled to -78° C, was added dropwise 8.9 g of (V). The mixture was warmed to $\sim 20^{\circ}$ C, poured into water, the organic layer separated, ether added, dried over MgSO₄, and distilled, the fraction bp 37-55°C (18 mm) being collected. The resulting mixture (3.3 g) contained (GLC and ¹⁹F NMR) 82% of (XX). The analytical sample was purified by preparative GLC, bp 54-55°C (25 mm), mp 24-25°C, ¹⁹F NMR spectrum in accordance with that reported [13]. Raman spectrum (ν , cm⁻¹): 1618 (C=C).

 $\frac{\text{Octafluoro-2,7-dithiatricyclo}[6.2.0.0^3,^6] \text{deca-1(8),3(6)-diene (XXI).} A \text{ mixture of 0.6}}{(VI) \text{ and 2 ml of dry ether was kept for 24 h, and the ether was then removed to give 0.31 g (58%) of (XXI), mp 131-133°C (from ether-hexane). IR and ¹⁹F NMR spectra as previously reported [14].}$

<u>Perfluoro-1,2,3,4,6,7,8,9-octahydrothianthrene (XXII).</u> a) To 2 ml of N-methylpyrrolidone was added slowly with cooling at 20°C 1.7 g of (VIII). The mixture was then poured into water, and the solid filtered off and recrystallized from methanol to give 0.7 g (46.4%) of (XXII), mp 88-90°C. Found: C 27.98; F 59.64; S 12.07%; mol. wt. 511.9800 (mass spectrum). $C_{12}F_{16}S_2$. Calculated: C 28.13; F 59.34; S 12.52%; mol. wt. 511.69186. IR spectrum (v, cm⁻¹): 1600 (C=C).

b) Compound (XXII) was obtained similarly from (VIII) in DMFA, and it was also the main product of the reaction of (VIII) with EtOH (with heating), according to ¹⁹F NMR and GLC.

CONCLUSIONS

1. A method has been found for the preparation of fluorinated enethiols by heating perfluoroalkenyl (or cycloalkenyl) benzyl sulfides with inorganic acids.

2. The enethiol form has been converted into the thiocarbonyl form, and the reactivities of both forms have been studied.

3. The perfluorinated enethiols are not in tautomeric equilibrium with the corresponding thioketones.

LITERATURE CITED

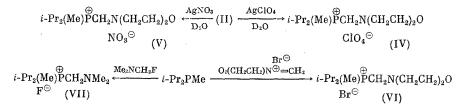
- 1. R. A. Bekker, V. Ya. Popkova, and I. L. Knunyants, Izv. Akad. Nauk SSSR, Ser. Khim., 2175 (1980).
- 2. R. A. Bekker, V. Ya. Popkova, and I. L. Knunyants, Izv. Akad. Nauk SSSR, Ser. Khim., 1176 (1981).
- 3. L. Brandsma, Rec. Trav. Chim., 89, 593 (1970).
- 4. D. Paquer and J. Vialle, Bull. Soc. Chim. France, 3595 (1969).

- 5. M. G. Voronkov, É. N. Deryagina, M. A. Kuznetsova, and I. D. Kalikhman, Zh. Org. Khim., 14, 185 (1978).
- 6. E. N. Deryagina, M. A. Kuznetsova, O. B. Bannikova, and M. G. Voronkov, Zh. Org. Khim., 14, 2012 (1978).
- 7. R. Mayer, J. Morgenstern, and J. Fabian, Angew. Chem., Int. Ed., 3, 277 (1964).
- 8. H. Hart, Chem. Rev., 79, 515 (1979).
- 9. F. Stacey and J. Harris, J. Am. Chem. Soc., 85, 963 (1963).
- 10. D. Wiley and H. Simmons, J. Org. Chem., 29, 1876 (1964).
- 11. I. L. Knunyants, L. S. German, G. G. Belen'kii, and G.I. Savicheva, Inventor's Certificate No. 525300 (USSR); Byull. Izobret., No. 22, 230 (1979).
- 12. M. Maruta and N. Ishikawa, J. Fluor. Chem., 13, 111 (1979).
- 13. C. Krespan, J. Am. Chem. Soc., <u>83</u>, 3435 (1961).
- 14. C. Krespan and D. England, J. Org. Chem., 33, 1850 (1968).

GEMINAL SYSTEMS.

COMMUNICATION 20.* STRUCTURE AND PROPERTIES OF AMINOMETHYLPHOSPHONIUM SALTS

- R. G. Kostyanovskii, Yu. I. Él'natanov, Sh. M. Shikhaliev, UDC 541.6:547.1'118 S. M. Ignatov, I. I. Chervin, Sh. S. Nasibov, A. B. Zolotoi,
- 0. A. D'yachenko, and L. O. Atovmyan


The phosphonium form of the phosphorus has greatest configurational stability [2]. Thus, for example, the PMR spectra of salts $[i-\Pr(\PrCH_2)MePH]$ I \odot [1] and $[i-\Pr_2(\PrCH_2) PMe]Br^{\leftarrow}$ (I) show nonequivalence of the methyl group protons of the isopropyl substituent (eight signals instead of four).

The properties of aminomethylphosphonium salts (AMPS) were attributed in our previous work to an anomalous reduction in the configurational stability of the phosphorus atom for the following reasons [3, 4]. First, the PMR spectra of all prepared AMPS do not display the expected nonequivalence of the geminal protons and substituent groups at the phosphorus atom

[1]. For example, Fig. 1 shows the equivalence of all three indicator groups (i-Pr, CH_2N ,

and CH₂Ph). Second, this spectrum lacks the additional multiplicity of the morpholine ring CH₂N signal which arises in the spectrum of the original aminomethylphosphine [1] due to asymmetric indication of the chiral phosphorus atom. These effects are retained in different sol-vents such as CDCl₃ (see Fig. 1) taken instead of CD₃OD, in which a low value is found for Δv of the methyl groups in Me₂ $\stackrel{\oplus}{P}$ (Ph)CH(Ph)Me $\stackrel{\odot}{Br}$ [5]. In the PMR spectrum of [*i*-Pr₂(Me) $\stackrel{\oplus}{P}$ CH₂N -

 $(CH_2CH_2)_2O]I^{\odot}$ (II) in Freon-21, the signals of the indicator groups are not split even upon cooling to -100 °C, and the ¹³C NMR spectrum shows equivalence of the methyl carbons and isopropyl groups in contrast to model phosphonium salt (III) (Table 1). The loss of the configurational stability of the phosphorus atom in AMPS may be attributed to the formation of a covalent P-anion bond and pseudorotation in the phosphorane formed. Since the question of the existence of iodophosphoranes is still not clear [6], we varied the X^{\odot} anions from those capable of forming a P-X bond to those to which formation of a covalent bond is very unlikely

*For Communication 19, see our previous work [1].

Institute of Chemical Physics, Academy of Sciences of the USSR, Moscow. Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 10, pp. 2354-2363, October, 1982. Original article submitted November 10, 1981.