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Characterization of the two major CYP450 metabolites
of ozonide (1,2,4-trioxolane) OZ277
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Abstract—The antimalarial synthetic ozonide OZ277 (RBx11160) was hydroxylated by human liver microsomes at the distal bridge-
head carbon atoms of the spiroadamantane substructure to form two carbinol metabolites devoid of antimalarial activity.
� 2008 Elsevier Ltd. All rights reserved.
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Figure 1. Ozonide 1 (OZ277) and its two hydroxylated metabolites 2

(OZ397) and 3 (OZ381).
The antimalarial sesquiterpene lactone artemisinin con-
tains a peroxide bond in the form of a 1,2,4-trioxane
heterocycle.1 The peroxide bond in artemisinin, semisyn-
thetic artemisinins, and synthetic peroxides is essential,
but not sufficient, for high antimalarial efficacy.1,2 A
synthetic peroxide antimalarial drug has yet to be iden-
tified,3,4 although a synthetic ozonide (OZ277 or
RBx11160)5 is now in Phase II clinical trials. Under-
standing the stability of the pharmacophoric peroxide
bond in OZ277 (1)6 to cytochrome P450 (CYP450)
metabolism is key to elucidating its pharmacokinetics
and pharmacodynamics. To this end, we studied the
reaction profile of 1 with human liver microsomes, and
we now report the structural identification, synthesis,7

and antimalarial activity of two major OZ277 hydroxyl-
ated metabolites 2 (OZ397) and 3 (OZ381) (Fig. 1).

Incubation of 1 (Fig. 2A) with human liver microsomes
in vitro produced three new peaks on LC/MS (Fig. 2B),
each with an increase in molecular weight of 16 suggest-
ing the presence of hydroxylated metabolites.8 The
hydroxylated metabolite peaks were further character-
ized by MS/MS (Fig. 2D and E). The MS/MS fragmen-
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tation of spiroadamantane ozonides (such as 1) in ESI–
MS is characterized by peroxide bond scission and sub-
sequent rearrangement resulting in the elimination of an
adamantane lactone fragment with the loss of 166 mass
units (Fig. 2C). Peaks b and c exhibited a loss of 182
mass units in the MS/MS spectra indicating incorpora-
tion of an oxygen atom in the adamantane substructure
(Fig. 2D). The minor hydroxylated metabolite (peak d)
showed a loss of 166 mass units indicating that the ada-
mantane moiety had not been modified and that incor-
poration of the oxygen atom had occurred at the
cyclohexyl side of the molecule (Fig. 2E). Although
the sites of hydroxylation could not be deduced from
the MS/MS fragmentation spectra alone, it was specu-
lated that the sites of hydroxylation of the two major
metabolites (peaks b and c) were at the two distal
bridgehead positions. This is consistent with the
observed preference for bridgehead oxidation in
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Figure 2. Mass chromatograms of (A) ozonide 1 (OZ277) and (B)

three hydroxylated metabolites formed upon incubation with human

liver microsomes. Peak a, ozonide 1 (OZ277); peak b, adamantane

hydroxylated metabolite 2 (OZ397); peak c, adamantane hydroxylated

metabolite 3 (OZ381) and peak d, cyclohexyl hydroxylated metabolite.

MS/MS spectra of (C) ozonide 1 (OZ277), (D) adamantane hydrox-

ylated metabolites 2 (OZ397) and 3 (OZ381), and (E) the cyclohexyl

hydroxylated metabolite.
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adamantane-containing structures.9 We also reasoned
that hydroxylation at the two proximal bridgehead car-
bon atoms was less likely to occur due to an inductive
effect of the ozonide heterocycle. Based on this hypoth-
esis, we synthesized putative hydroxylated metabolites 2
and 3 (vide infra) and found that they had identical
chromatographic retention characteristics and MS frag-
mentation patterns to the two major in vitro metabolites
formed in human liver microsomes. A repeat of the
in vitro metabolism studies quantitating metabolite for-
mation indicated that 2 was the major, and 3 was the
minor, metabolite, in an approximate 4:1 ratio.

Minor metabolite 310 was obtained in a four-step
sequence (Scheme 1) starting with a Griesbaum coozon-
olysis11,12 reaction between 5-acetoxy-2-adamantanone
O-methyl oxime (4) and keto ester 5. Oxime ether 4
was obtained by treatment of 5-hydroxy-2-adamanta-
none with methoxylamine HCl and pyridine (97%) fol-
lowed by acetylation with Ac2O, pyridine, and DMAP
(cat.) (91%). Ozonolysis of unsymmetrical oxime ethers
such as 4 produce enantiomeric carbonyl oxide interme-
diates, which in cycloaddition reactions with 4-substi-
tuted cyclohexanones (such as 5) could form four
isomeric ozonides.13 Based on our previous data,14,15

we expected to observe the formation of two major
ozonide isomers with substituent and peroxo groups at
the equatorial and axial positions in the cyclohexane
ring. Indeed, proton and carbon NMR of the purified
(sg, 10% ether in hexanes) reaction mixture (30%) indi-
cated formation of two predominant ozonide diester iso-
mers16 from which we were able to crystallize the major
isomer 6 in 17% yield. Conversion of 6 to minor metab-
olite 3 was relatively straightforward beginning with es-
ter hydrolysis (96%) to hydroxy acid 7 followed by
conversion to active ester 8 (89%). Amide bond (80%)
and salt formation with TsOH (94%) completed the
reaction sequence. The trans,cis configuration of 6,
and therefore of 3, was assigned based on the conversion
of trans,cis ozonide diester 10 (vide infra) to 7 (86%).

Similarly, major metabolite 217 was obtained in a four-
step sequence (Scheme 2) starting with a Griesbaum
coozonolysis11,12 reaction between 5-(4-methylbenz-
oxy)-2-adamantanone O-methyl oxime (9) and keto es-
ter 5 to afford, after chromatography (sg, 0–20% ether
in hexanes), a mixture of four ozonide diester diastereo-
mers (54%).13,16 Oxime ether 9 was obtained by acyla-
tion of 5-hydroxy-2-adamantanone with 4-
methylbenzoyl chloride in pyridine (90%) followed by
treatment with methoxylamine HCl and pyridine
(94%). The 4-methylbenzoate (rather than acetate) was
chosen to increase molecular weight to allow for more
convenient fractional crystallization of the minor ozon-
ide diester isomers, and to provide convenient benzylic
singlet proton NMR signals to distinguish between iso-
mers. Repeated chromatography (sg, 8% ether in hex-
anes) gave four fractions (isomers A + B), isomer B,
isomers B + C, and isomers C + D. Crystallization of
isomer B from acetone gave 10 as colorless crystals,
established as the trans,cis diastereomer by X-ray crys-
tallographic analysis (Fig. 3). Repeated chromatography
(sg, 8% ether in hexanes) of isomers B + C gave isomer
C which was crystallized from acetone to give 11 as col-
orless crystals, established as the cis,cis diastereomer by
X-ray crystallographic analysis (Fig. 3). Diester ozonide
11 was converted to major metabolite 2 following a sim-
ilar sequence to that described for minor metabolite 3:
ester hydrolysis to hydroxy acid 12 (81%), conversion
to active ester 13 (83%) followed by amide bond forma-
tion and conversion to the tosylate salt (71% combined
yield).

The crystallization conditions described above delivered
suitable crystals for X-ray analysis of 10 and 11.18 In
both cases, single crystals were mounted in a loop and
data were collected on a STOE Imaging Plate Diffrac-
tion System (STOE, Darmstadt) with Mo-radiation
(0.71 Å) at room temperature. Data were processed with
STOE IPDS-software and the crystal structures were
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solved and refined with ShelXTL (Bruker AXS, Kar-
lsruhe). The relative configuration of 10 was confirmed
by an independent X-ray analysis of a second crystal.

Somewhat unexpectedly, we found that both 2 and 3
had IC50 values >100 ng/mL against the chloroquine-
resistant K1 strain of Plasmodium falciparum
in vitro; in comparison, 1 has an IC50 of 1.0 ng/mL
against this same parasite strain.5 The complete lack
of antiplasmodial activity of 2 and 3 demonstrates
the essential contribution of an unsubstituted spiroad-
amantane ring system to the antimalarial properties of
1. It is conceivable that the steric hindrance provided
by the bridgehead carbinols in 2 and 3 prevents effi-
cient alkylation reactions of the spiroadamantane-de-
rived secondary carbon-centered radicals19 from
occurring when the ozonide reacts with iron(II) in
the parasite. Consistent with a general SAR trend
for this class of antimalarial peroxides,20 it is also
likely that the greater polarity of 2 and 3 (LogD
1.8) vs. 1 (LogD 3.2) may, in part, account for the
inactivity of the former.
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