
ISOLATION AND CHARACTERIZATION OF STABLE ALKYLIDENEPHOSPHINES

Masaaki YOSHIFUJI,* Kozo TOYOTA, Katsuhiro SHIBAYAMA, and Naoki INAMOTO Department of Chemistry, Faculty of Science, The University of Tokyo, Hongo, Tokyo 113

E and $Z-P-\alpha-(t-Butyldimethylsilyloxy)$ benzylidene(2,4,6-tri-tbutylphenyl)phosphines were isolated as stable compounds.

Primary phosphines are quite toxic and evil-smelling compounds. Generally they are very easily oxidized and, particularly, those containing the lower aliphatic moieties ignite spontaneously in air.¹⁾ Recently, we²⁾ and others³⁾ reported the preparation of a primary phosphine, 2,4,6-tri-t-butylphenylphosphine (1), which is quite stable to air and odorless. The phosphine $\frac{1}{2}$ has turned out to be a useful starting material for another sterically protected phosphorus-containing unusual species.²⁻⁵⁾ Phosphorus(III)-containing p_{π} - p_{π} double bond compounds have been of current interest, since some of those with $-P=C<^{6-8}$ $-P=N-,^{9}$ and $-P=P-^{10}$ were reported to be isolable materials if protected sterically.

We now report the preparation and characterization of alkylidenephosphines (6 and 7) starting from 1 via a silylphosphine 3 through a 1,3-silyl migration of an acylsilylphosphine intermediate 5 as shown below.

The phosphine 1 was metallated with butyllithium in tetrahydrofuran (THF) at room temperature under argon and the resulting phosphide 2 was quenched with tbutylchlorodimethylsilane to give t-butyldimethylsilyl(2,4,6-tri-t-butylphenyl)phosphine (3) almost quantitatively after removal of THF, addition of pentane, and filtration of insoluble material. 3: oil; ¹H NMR (CDCl₃) δ =7.21 (2H, d, ⁴J_{PH}=2.4 Hz, arom.), 4.30 (1H, d, ¹J_{PH}=211.1 Hz, P<u>H</u>), 1.52 (18H, s, o-Bu^t), 1.27 (9H, s, p-Bu^t), 0.89 (9H, s, Si-Bu^t), and -0.24 (6H, d, ³J_{PH}=8.8 Hz, Si-Me); IR (KBr) 2375 cm^{-1} (P-H); MS m/e 392 (M⁺). The silylphosphine 3 was repeatedly lithiated with butyllithium in THF at room temperature under argon to give the corresponding phosphide 4 and allowed to react with benzoyl chloride to give E-P-a-(t-butyldimethylsilyloxy)benzylidene(2,4,6-tri-t-butylphenyl)phosphine (6) in 63% yield from 1 after purification by column chromatography (SiO₂). 6: mp 121 - 124 °C; ¹H NMR (CDC1₃) δ =7.38 (2H, d, ⁴J_{PH}=1.5 Hz, arom.), 7.0-6.4 (5H, m, Ph), 1.49 (18H, d, ${}^{5}J_{pH}$ =0.7 Hz, o-Bu^t), 1.38 (9H, s, p-Bu^t), 1.07 (9H, s, Si-Bu^t), and 0.39 (6H, d, ${}^{3}J_{PH}$ =1.8 Hz, Si-Me); IR (KBr) 840 cm⁻¹ (P=C); MS m/e 496 (M⁺); UV (CH₂Cl₂) 247 (ϵ 14700) and 321 nm (10000). The E-isomer 6 was irradiated with a medium pressure mercury lamp for 2 h in benzene at 0 °C under argon to give the corresponding Zisomer 7 almost quantitatively. 7: mp 102 - 104 °C; 1 H NMR (CDCl₃) δ =7.5 - 7.3 (5H, m, Ph), 7.25 (2H, d, ⁴J_{PH}=0.9 Hz, arom.), 1.55 (18H, s, o-Bu^t), 1.33 (9H, s, p-Bu^t), 0.56 (9H, s, Si-Bu^t), and -0.36 (6H, s, Si-Me); IR (KBr) 830 cm⁻¹ (P=C); MS (field desorption ionization) m/e 496; UV (CH $_2$ Cl $_2$) 244 (ϵ 15800) and 306 nm (10600). Table 1 shows ^{31}P NMR parameters of some phosphorus compounds obtained during the course of this work. Table 2 shows ${}^{13}C{}^{1}H$ NMR data of 3, 6, and 7. It should be noted that the alkyls on the silicon atom in $\frac{6}{\sim}$ interact more strongly with the phosphorus atom than those in 7^{8} in terms of spin-spin coupling constants J_{PC} .

The reaction might proceed via the benzoylsilylphosphine 5 first formed as an intermediate and the silyl group migrates in a 1,3-fashion to give the E-isomer 6. By considering the Dreiding models of 6 and 7, the E-isomer 6 is more crowded than the Z-isomer 7, therefore photoisomerization of E to Z is reasonably explained, however, 6 did not isomerize to 7 in refluxing benzene for several hours. A preliminary measurement of spin-lattice relaxation times (T_1) by an inversion recovery FT method in ³¹P NMR (in CDCl₃ at 30 °C) indicated that the more crowded E-isomer 6 has a shorter T_1 (5.6 s) than that for the Z-isomer 7 (8.3 s), which is also consistent with this assignment of configurations.¹¹) It should also be noted

Compound		Solvent	δ _p /ppm	¹ J _{PH} /Hz
ArPH ₂	(1)	CDC1 ₃	-129.9	210.6
ArP(H)Li	$(\tilde{2})$	THF	-108.8	170.9
ArP(H)SiMe ₃		THF	-130.1	212.4
ArP(SiMe ₃)Li		THF	-151.2	
ArP(H)SiMe ₂ Bu ^t	(3)	CDC1 ₃	-136.2	210.0
ArP(SiMe ₂ Bu ^t)Li	(4)	THF	-156.0	
E-ArP=C(OSiMe ₂ Bu ^t)Ph	(<u>6</u>)	CDC1 ₃	160.3	
Z-ArP=C(OSiMe ₂ Bu ^t)Ph	(7)	CDC1 ₃	141.3	

TABLE 1. ³¹P NMR Parameters of Some Phosphorus Compounds

TABLE 2. ¹³C{¹H} NMR Data of Compounds 3, 6, and 7 in CDC1₃

Compound	$\delta_{\rm C}/{\rm ppm}$ (assignment, multiplicity, ${\rm J}_{\rm PC}$)	
\xrightarrow{P}	$154.4 (C^2, d, {}^2J=6.1 Hz)$ $38.3 (C^5, s)$ $146.9 (C^4, d, {}^4J=1.2 Hz)$ $34.5 (C^7, s)$ $128.3 (C^1, d, {}^1J=32.4 Hz)$ $33.7 (C^6, d, {}^4J=6.7 Hz)$ $121.0 (C^3, d, {}^3J=3.7 Hz)$ $31.4 (C^8, s)$ $27.4 (C^{10}, d, {}^3J=2.4 Hz)$ $19.6 (C^9, d, {}^2J=9.8 Hz)$ $-3.0 (C^{11}, d, {}^2J=5.5 Hz)$	
$ \begin{array}{c} $	$192.1 (C^{12}, d, {}^{1}J=42.7 Hz)$ $38.2 (C^{5}, s)$ $154.9 (C^{2}, d, {}^{2}J=2.4 Hz)$ $35.0 (C^{7}, s)$ $150.6 (C^{4}, s)$ $32.6 (C^{6}, d, {}^{4}J=6.7 Hz)$ $140.6 (C^{13}, d, {}^{2}J=14.0 Hz)$ $31.5 (C^{8}, s)$ $132.8 (C^{1}, d, {}^{1}J=56.2 Hz)$ $26.0 (C^{10}, d, {}^{5}J=1.2 Hz)$ $127.3 (C^{16}, d, {}^{5}J=4.3 Hz)$ $18.5 (C^{9}, s)$ $126.9 (C^{14}, d, {}^{3}J=5.5 Hz)$ $-4.9 (C^{11}, d, {}^{4}J=8.6 Hz)$ $122.2 (C^{3}, s)$ $26.0 (C^{10}, d, {}^{5}J=1.2 Hz)$	
$P = C_{12}^{11}$ $P = C_{12}^{12}$ T_{16}^{11}	$188.5 (C^{12}, d, {}^{1}J=51.9 Hz)$ $38.1 (C^{5}, s)$ $154.6 (C^{2}, d, {}^{2}J=2.4 Hz)$ $34.9 (C^{7}, s)$ $149.0 (C^{4}, s)$ $32.9 (C^{6}, d, {}^{4}J=6.7 Hz)$ $142.6 (C^{13}, d, {}^{2}J=32.3 Hz)$ $31.5 (C^{8}, s)$ $133.2 (C^{1}, d, {}^{1}J=53.7 Hz)$ $25.7 (C^{10}, s)$ $128.6 (C^{16}, d, {}^{5}J=3.1 Hz)$ $18.2 (C^{9}, s)$ $128.0 (C^{14}, d, {}^{3}J=10.4 Hz)$ $-3.1 (C^{11}, s)$ $127.5 (C^{15}, d, {}^{4}J=14.0 Hz)$ $121.6 (C^{3}, d, {}^{3}J=1.2 Hz)$	

Chemistry Letters, 1983

that both $\underline{6}$ and $\underline{7}$ are stable for a long period of time in the pure state and neither isomerize nor polymerize.

Further studies on the reactions of <u>6</u> and <u>7</u> are in progress.¹²⁾ We thank Mr. Hiroaki Shiraishi at the National Institute for Environmental Research, Japan, for obtaining FD-MS of <u>7</u> and Shin-Etsu Chemical Co., Ltd. for donation of the silyl halides used in this work. This work was also supported in part by the Scientific Research Grant-in-Aid (Nos. 543008, 57540276, and 58840023) from the Ministry of Education, Science and Culture of Japan.

References

- L. Maier, "Organic Phosphorus Compounds," ed by G. M. Kosolapoff and L. Maier, Wiley-Interscience, New York (1971), Vol. I, p. 1.
- M. Yoshifuji, K. Shibayama, N. Inamoto, T. Matsushita, and K. Nishimoto, J. Am. Chem. Soc., 105, 2459 (1983).
- K. Issleib, H. Schmidt, and Chr. Wirkner, Z. Anorg, Allg. Chem., <u>488</u>, 75 (1982); A. Zschunke, E. Bauer, H. Schmidt, and K. Issleib, ibid., <u>495</u>, 115 (1982).
- 4) M. Yoshifuji, K. Shibayama, K. Toyota, and N. Inamoto, Tetrahedron Lett., <u>24</u>, in press.
- A. H. Cowley, J. E. Kilduff, S. K. Mehrotra, N. C. Norman, and M. Pakulski, J. Chem. Soc., Chem. Commun., 1983, 528.
- Th. Klebach, R. Lourens, and F. Bickelhaupt, J. Am. Chem. Soc., <u>100</u>, 4886 (1978).
- 7) R. Appel, F. Knoll, and I. Ruppert, Angew. Chem., Int. Ed. Engl., <u>20</u>, 731 (1981).
- 8) G. Becker, W. Becker, and O. Mundt, Phosphorus and Sulfur, 14, 267 (1983).
- 9) E. Niecke, R. Rüger, and W. W. Schoeller, Angew. Chem., Int. Ed. Engl., <u>20</u>, 1034 (1981).
- M. Yoshifuji, I. Shima, N. Inamoto, K. Hirotsu, and T. Higuchi, J. Am. Chem. Soc., <u>103</u>, 4587 (1981); <u>104</u>, 6167 (1982).
- Ramarajan, M. D. Herd, and K. D. Berlin, Phosphorus and Sulfur, <u>11</u>, 199 (1981).
- 12) Attempts to use chlorotrimethylsilane instead of t-butylchlorodimethylsilane have been unsuccessful because the silylphosphine obtained was unstable and the further lithiation was not efficient enough to give exclusively the corresponding phosphide (δ_p -151.2 ppm in THF) and addition of butyllithium in excess amount cleaved the silyl group to give the starting 2 (see Table 1).

(Received August 12, 1983)

1656