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Abstract: A unique 12-step scheme for the stereoselective synthesis of (+)-brefeldin A intermediate 2 
starting from ethyl O-benzyl (S)-iactate (3) has been accomplished. 

The unusually broad spectrum of biological activity exhibited by (+)-brefeldin A (1), a thirteen- 

membered macrocyclic fungal metabolite, has prompted rather impressive synthetic efforts to date in a number of 

laboratories) Described herein is a new stereoselective approach to an advanced intermediate 2 for the synthesis 

of (+)-brefeldin A (1), which is unique in the sense that the chirality of ethyl O-benzyl (S)-lactate (3) [C~5 in the 

brefeldin numbering system] controls the relative stereochemistry of the rest of remote stereogenic centers in 2. 

Our synthetic scheme features 1) iterative 1,4-chirality transfer processes by 'chelation-controlled' Ireland ester 

enolate Claisen rearrangements [5 --) 7 & 9 --) 1112; 2) consecutive Ireland-Johnson [3,3]-sigmatropic 

rearrangements [9 -) 11 & 12 --) 14]; 3) a chemoselective NaBH 4 reduction of c~-alkoxy ester function in the 

presence of an ordinary ester [14 --) 15]; 4) a stereoselective intramolecular ester enolate alkylation [16 --) 17] as 

key steps as summarized in the following scheme. 
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Reagents: i) a) DIBALH, -78 °C, 1.5 h b) CH2=CHbtIBr, ether, -78 °C to rt, 2 h (73%); ii) PMBOCH2CO2H, DCC, DMAP, 
CHIC12, rt, 4 h (97%); iii) a) LDA, TMSCI, TEA, THF, -78 °C to rt, 2 h b) CHIN2, ether, rt, 30 rain (85%); iv) NH2NH2, CuO, 
THF, NaOAc, reflux, 6 h (60%); v) a) DIBALH, -78 °C, 1.5 h b) CH2--CHMgBr, ether, -78 °C to rt, 2 h (5.7 : 1; 73%); vi) 

MOMOCH2CO2H, DCC, DMAP, CH~CI2, rt, 3 h (93%); vii) a) LDA, TMSCI, TEA, TI-IF, -78 °C to rt, 2 h b) CH2N2, ether, rt, 

30 min (86%); viii) DDQ, CH2Cli-H20 (18 : 1), rt, 30 min (86%); ix) CH3C(OEt)3, phenol (eat), 120 °C, 4 h (84%); x) NaBI-14, 

EtOH, rt, 3 h (97%); xi) TsCI, pyddine, CHC13, rt, 24 h (93%); xii) KHMDS, THF, -78 °C, 30 min, then rt, 30 min (56%). 
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Thus, readily available ethyl O-benzyl (S)-lactate (3) 3 was converted to syn-l,2-diol (6:1 synlanti 

ratio) derivative 4 by successive treatment with vinylmagnesium bromide in ether according to Burke's one-pot 

protocol 4 in 85% yield, s'6 Acylation of allylic alcohol 4 with PMBOCI-I2CO2 H under Hassner's conditions 7 

produced allylic glycolate 5, which was subjected to the Burke-Fujisawa-Kallmerten 'chelation-controlled' 

modification s of the Ireland Claisen rearrangement to furnish V, &unsaturated glycolate 7 in a highly stereo- 

selective manner, by a 1,4-chirality transfer process as shown in 6 (67% overall yield for two steps). After the 

removal of the superfluous double bond in compound 7 by a diimide reduction, the resulting ester 8 was 

converted to the more highly elaborated ~,, 5-unsaturated glycolate 11 by a reiterative three-step sequence in 

comparable overall yield and stereoselectivity. 5'6 Deprotection of the PMB group of compound 11 with DDQ 

using Yonemitsu's conditions 9 generated secondary allylic alcohol 12, which underwent a smooth Johnson 

orthoester Claisen reaxrangement ~° with Methyl orthoacetate to give the corresponding diester 14 via transition 

state geometry 13. Chemoselective NaBH 4 reduction of the a-alkoxy ester function of 13 in EtOH at room 

temperature, followed by tosylation, afforded the requisite internal alkylation substrate 16 in 90% overall yield 

for the two steps. Finally, the crucial cyclization of ~tosyl  ester 16 with KHMDS in THF provided the desired 

cyclopentanecarboxylate 2 in 56% yield. I~ The racemic debenzylated methyl ester corresponding to 2 has been 

previously converted to (+)-brefeldin A by Bartlett) 2 

In summary, a novel and efficient stereoselective sequence for preparing synthetic intermediate 2 for 

total synthesis of (+)-brefeldin A has been developed using 1,3- and 1,4-chirality transfer processes involving 

iterative, consecutive [3,3]-sigrnatropic rearrangements, in addition to an internal ester enolate alkylation. 
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