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Abstract: Olefins are converted to epoxides in aqueous medium using formamide-hydrogen peroxide as 
oxidant. 

A number of reagents have been described to mediate the epoxidation of olefins by hydrogen peroxide. 

These include many different iron and manganese porphyrins, la selenic acids, I b hexafluoroacetone, l c activated 

derivatives of carboxylic and phosphonic acids, isocyanates, diimides, and nitriles. 2 We now report that simple 

amides activate hydrogen peroxide for olefin epoxidation in aqueous medium in a pH-independent manner. In 

particular, formamide-hydrogen peroxide is found to be a mild and efficient epoxidation reagent. 

We recently showed that acetonitrile-hydrogen peroxide, a reagent initially described by Payne, 3 can be 

used in conjunction with antibodies to effect catalytic, enantioselective epoxidation of unfunctionalized olefins. 4 

In the course of these investigations, we found that under slightly more acidic conditions (pH 6.5) than those 

recommended by Payne (NaHCO3 buffer, pH 8), the epoxidation reaction was promoted by the reaction 

product acetamide almost as efficiently as by acetonitrile itself. A survey of simple amides as epoxidation 

promoters was conducted using the oxidation of olefin 1 (250 I, tM) to epoxide 2 as model reaction. Initial rates 

were measured by following product formation over time by reversed-phase HPLC. At pH 6.5 (50 mM 

phosphate buffer) in the presence of 725 mM (2.5 % v/v) H202 and 250 mM reagent at 20 oC, epoxidation of 

1 to 2 takes place at the rate of approximately 2 to 20 % per day, giving the following reactivity order for 

simple amides compared to acetonitrile: HCONH2 (7.7), HCONHCH3 (5.4) >> HCON(CH3)2 (1.0), CH3CN 

(1.0), CH3CONH2 (0.70)>> CH3CON(CH3)2 (0.24), CH3CONHCH3 (0.15). The pH-rate profile (figure 1) 

shows that the epoxidation with formamide, the most efficient promoter at pH 6.5, is completely pH- 

independent within the stability range of the formed epoxide (pH 4 to 9), and is insensitive to the nature of the 

buffer system used. By contrast, the acetonitrile reaction seems to follow a more complex path with pH and 

buffer dependency. 
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The results of the epoxidation with formamide-hydrogen peroxide for a series of representative alkenes 

are reported in Table 1. We obtained good yields of epoxides with tri- and Z- di-substituted olefins, which are 
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the more reactive. No reaction was observed with a selection of E- disubstituted and terminal olefins (E-~- 

methyl styrene, E-2-hexen-1-ol, 5-hexen-1-ol, l-octen-3-ol, styrene). Epoxidation of bifunctional alkenes with 

this reagent takes place at the more reactive double bond (7 and 8), with a selectivity for the double bond 

without allylic hydroxy group which complements the Sharpless epoxidation. 5 
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F i g u r e  1. p H - r a t e  p r o f i l e  as 

log(kapp[min-I]) for the epoxidation of 1 

to 2 w i th  f o r m a m i d e - H 2 0 2  (m, all 

buffers) and acetonitr i le-H202 in citrate 

(o ) ,  phosphate (o) or borate (A) buffers. 

Initial rates (< 5% conv.)  measured in 

water at 20 o c  with 250 I.tM 1, 100 mM 

HCONH2 or CH3CN, 725 mM H202,  50 

mM Na2SO 4, 50 mM buffer (citrate pH 4 

to 5.5, phosphate pH 6 to 8, borate pH 7 

to 9). 

Table  1. Epoxidations with Formamide-hydrogen peroxide, a 

H a C ~ O H  H 3 C ~  

HO" v "-I La 
69 % 

98 % 3 4 5 

OH 
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6 

CH3 , CH3 HO\/CH3 

H 3 C , , ~  J * , , ~  O H H 30 ~ , , " ~ . ~ , . ~ ' ~  

65% 7' 950/0 8 440/0 9 

~ "~ OH 

6~ 
6 1 %  10 

a Isolated yields after purification by chromatography on silicagel. Site of epoxidation indicated by arrow. No significant 
stereoselectivity was observed with chiral substrates. Conditions: 1 mmol olefin, aq. NaH2PO 4 pH 6.0 with MeOH cosolvent 
(dioxane for 9), 10 eq.HCONH2, 15 eq. H202, 50 °C, 3 hours, b 37 °C, 3h, 20 % diepoxide and 12 % starting material were also 
isolated. 

In the Payne reaction, H202 or its anion first adds to acetonitrile to form a peroxy carboximidic acid, 

which then either delivers oxygen to the alkene, or reacts again with H 2 0  2 to form acetamide and singlet 

oxygen. Since H202 promotes amide bond hydrolysis, 6 the epoxidation with the amide promoters should start 

by addition of H202 at the acyl carbon. The resulting tetrahedral intermediate I could collapse either to a peroxy 
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carboximidic acid (path A) or to a peracid (path B) as the active oxidant.7, 8 Alkene epoxidation (A1 or B 1), 

oxidation of H202 to oxygen (A2 or B2), or hydrolysis (A3 or B3) could then take place. 

In the absence of olefin, formamide reacts rapidly with H202 to give ammonium formate and oxygen. 

Approximately 2 equivalents H202 are needed to hydrolyze all of the formamide, and only 45 % of the 

formamide is hydrolyzed with 1.0 equivalent H202 .9 This suggests that the reaction proceeds via pathway B2 

(stoichiometric hydrolysis of formamide by two equivalents of H202), and not A2 (formamide-catalyzed 

consumption of H202) or B3 (H202 catalyzed hydrolysis of formamide). The preferred epoxidation pathway is 

thus probably B1, which involves performic acid as oxidant, j° and consumes one equivalent of each 

formamide and H202 per oxidized olefin. 1J 
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If the epoxidation of olefins with formamide-H202 involves performic acid, which is a rather strong 

peracid, as active oxidant, the selectivity of the reagent is quite surprising. We propose that the exceptional 

mildness of performic acid under these conditions results from the fact that olefin epoxidation takes place in 

competition with the reaction of the peracid with H202 (path B2). There H202 acts as a reducing agent, and can 

consume all of the peracid if the tie fin is not sufficiently reactive to compete. Therefore no epoxidation takes 

place with unreactive olefins. 12 

In summary, we have disclosed a new aspect of the chemical reactivity of simple amides. Similarly to 

the nitriles, formamide is otherwise relatively inert. Epoxidation with formamide - hydrogen peroxide is pH- 

independent and thus leaves complete freedom to manipulate the pH parameter. 13 These features make this 

reagent attractive for epoxidation in buffered aqueous or aqueous/organic media. Its utilization for antibody 

mediated, enantioselective epoxidation will be reported in due course. 

Experimental Procedure. The olefin (1 mmol), formamide (0.4 mL, 10 mmol), hydrogen peroxide (l.6 mL of 

30 % aq. soln., 15 rmnol) and buffer (6 mL of 0.5 M NaH2PO4, pH 6.0) were heated at 50 oC and then diluted 

with methanol or dioxane to obtain a clear solution (4 to 8 mL). The reaction mixture was stirred at 50 °C for 3 

to 10 hours, which generally resulted in complete disappearance of the olefin. Aqueous saturated NaCI (10 mL) 
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was added and the solution was extracted with ethyl acetate (4 x 10 mL). After drying (MgSO4) and 

evaporation, the crude product was purified by flash chromatography on silicagel (hexane/ethyl acetate) to give 

the pure epoxide (clear colorless oil, 44 - 98 % yield). 14 
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