An Efficient Reduction System - NICl₂.6H₂O-Zn/DMF-H₂O for Conversion of Aldehydes to Alcohols

Robindra N. Baruah

Natural Products Chemistry Division, Regional Research Laboratory (CSIR) Jorhat 785 006, Assam, INDIA

Abstract : Aldehydes were efficiently converted to the corresponding alcohols at room temperature with NiCl₂.6H₂O-Zn/DMF-H₂O system.

Al-NiCl₂.6H₂O-THF system^{1,2} was used for selective reduction of the double bonds of the α , β -unsaturated carbonyl compounds and nitroarenes. We have now found that NiCl₂.6H₂O-Zn/DMF-H₂O is an efficient system for reduction of various aldehydes to the corresponding alcohols in one step at room temperature with excellent yields. If NiCl₂.6H₂O-Zn/DMF-D₂O is used instead of NiCl₂.6H₂O-Zn/DMF-H₂O, the aldehydes are converted to deuterium labelled alcohols (RCHDOH) conveniently as shown below.

RCHO
$$\frac{\text{NiCl}_2.6\text{H}_2\text{O}}{\text{DMF-H}_2\text{O} \text{ (or DMF-D}_2\text{O})} \Rightarrow \text{RCH}_2\text{OH (or RCHDOH)}$$
Scheme

The advantages of this method are - (i) the reagents are readily accessible, (ii) the reaction is carried out at room temperature in one step, (iii) yields are quite satisfactory. This method therefore also provides a facile and mild approach for reduction of aldehydes. However, ketones are found uneffected by this reagent under this condition.

The mechanism of the reaction is not clear but some experimental results are noteworthy. A dark precipitation was found in the course of the reduction which is most probably due to the reduction of Ni(II) to Ni(0).³ In the absence of NiCl₂.6H₂O or H₂O, the reduction did not occur. Evolution of hydrogen was observed which might be produced by Zn with hydrogen chloride generated from hydrolysis of NiCl₂.

General procedure : A mixture of NiCl₂.6H₂O (3 mmol), Zn dust (10 mol), an aldehyde (1 mmol) in a mixed solvent DMF-H₂O (1:1, 4 ml) was stirred at r.t. under nitrogen. After completion of the reaction (monitored by TLC) and usual work up furnished the corresponding alcohols, which were purified by chromatography. When DMF-D₂O was used instead of DMF-H₂O, the corresponding deuterium labelled alcohols were obtained. Typical examples are compiled in the Table 1.

Entry	Substrate	Product ^a	Time	% yield
1	с ₆ н ₅ сно	C ₆ H₅CH₂OH	30 min	95
2	p-CIC ₆ H ₄ CHO	p-CIC6H4CH2OH	15 min	97
3	р-CH ₃ C ₆ H ₄ CHO	р-СН ₃ С ₆ Н ₄ СН ₂ ОН	30 min	95
4	CHO CHO	CH2OH	l h	98
5	MeO – CHO	мео-СР-СН ₂ ОН	1.5 h	98
6	MeO CHO	мео СН ₂ ОН	1.5 h	98
7		MeO OMe MeO CH ₂ OH	2 h	98
8	MeO CHO MeO	MeO CH ₂ OH	2 h	98
9	НО — СНО	MeO HO MeO	2 h	95
10	Сно	сн ₂ он	2 h	95
11	СНО	Сн2он	5 h	95
12	СНО	сн2он	2 h	95
13	CH ₃ (CH ₂) ₁₄ CHO	CH ₃ (CH ₂) ₁₄ CH ₂ OH	5 h	65
14		No reaction	3 h	
15	°	No reaction	1.5 h	
16	$\rightarrow \bigcirc$	No reaction	2 h	
17	(C ₆ H ₅) ₂ CO	No reaction	1.5 h	

Table 1 : Reduction of aldehydes with $NiCl_2 \cdot 6H_2O-Zn/DMF-H_2O$

^aAll products were confirmed by IR, ¹H NMR and MS ^bYields refer to the isolated products of > 98% purity

References

Hazarika, M.J.; Barua, N.C. Tetrahedron Lett. 1989, 30, 6567-6570
Sarma, P.; Barua, N.C. Tetrahedron Lett. 1990, 31, 4065-4066

3. Ishige, M.; Shlota, M. Can. J. Chemistry, 1975, 53, 1700-1707

(Received in UK 23 June 1992)