$E_{\rm ox}(A^-)$ values can be derived from the log $k_{\rm obsd}$ vs. $E_{\rm ox}(A^-)$ plot (Figure 2) for 9-MeS-Fl⁻ and 9-*i*-PrS-Fl⁻ ions. These values are within $\pm 25 \text{ mV}$ of the measured values. The $E_{\rm ox}(A^-)$ for 9-RS-Fl⁻ ions would have to be more than 100 mV higher than observed for α -RS to be more stabilizing than α -RO.

Reactions of t-BuFI⁻ Ion with c-C₆H₁₀(NO₂)Ts and with PhSO₂CH₂Br. Reactions of R₂C(NO₂)X electron acceptors with 9-G-FI⁻ ions, where G = Me, C₆H₅ p-MeC₆H₄, and PhS, have been found earlier to give 60-80% yields of (9-G-FI)₂ and (R₂CNO₂)₂ dimers together with small amounts of R₂CHNO₂.²⁴ Under the same conditions, with 150 mg (0.675 mmol) of t-BuFIH, 76 mg (0.675 mmol) of t-BuGK, and 191 mg (0.675 mmol) of c-C₆H₁₀(NO₂)Ts, a complex mixture was obtained from which 63 mg of t-BuFIH, 42 mg of c-C₆H₁₀(NO₂)Ts, 58 mg of (c-C₆H₁₀NO₂)₂, and 20 mg of c-C₆H₁₁NO₂ were recovered.

Also, 9-t-BuFl⁻ ion was prepared in situ from 9-t-BuFlH by titration with CH₃SOCH₂K in Me₂SO and reacted with an equivalent amount of PhSO₂CH₂Br. Quenching with water, extraction with ether, and chromatography on silica gave principally 9-t-BuFlH in the first fraction and PhSO₂CH₃ in the second. The t-(BuFl)₂ dimer is presumably unstable under these conditions.

9-Isopropoxyfluorene. 9-Bromofluorene was refluxed in isopropyl alcohol until TLC tests indicated the absence of starting materials (120 h). Sublimation of the white solid formed by pouring the mixture into ice water gave coloreless flakes: mp 43-44 °C; NMR δ 1.15 (d, 6 H), 3.88 (sept 1 H), 5.6 (s, 1 H), 7.2-7.8 (m, 8 H). Anal. Calcd for C₁₀H₁₆O: C, 85.7; H, 7.2. Found: C, 85.8; H, 7.3.

Acidity Constant Measurements. Measurement of the acidities of 9-Ph₂CH-FlH and 9-Ph₃C-FlH are rendered difficult by the low solubility of these compounds in Me₂SO. Concentrations sufficient for pK_a measurements (2 mM) were obtained, however, after prolonged contact with the solvent (2 h and 10 days, respectively). The pK_a of 9-Ph₂CH-FlH is 20.9₅, which is the average of titrations made with (m- $F_3CC_6H_4CH_2$)₂SO₂ ($pK_a = 20.97$) and PhSCH₂SO₂Ph ($pK_a = 20.34$) as standard acids. The pK_a of 9-Ph₂C-FlH is 20.3 as determined by titration with (m- $F_3CC_6H_4CH_2$)SO₂. The trend in acidities for the series 9-MeFlH (22.3), 9-PhCH₂FlH (21.4), 9-Ph₂CHFlH (20.9₅), and 9-

Ph₃C-FIH (20.3) indicates that the acid-strengthening inductive effect, aided perhaps by some relief of strain in forming the anion, prevails over steric inhibition of solvation.

The pK_a of 9-*i*-PrO-FIH was determined to be 21.43 ± 0.01 by titration at 565 nm with fluorene (pK_a 22.6) as a standard acid. Titration with PhSCH₂SO₂Ph (pK_a = 20.34) gave pK_a = 21.29 \pm 0.05; average 21.36.

Acknowledgment. We are grateful to the donors of the Petroleum Research Fund, administered by the American Chemical Society, and to the National Science Foundation for financial support. We thank M. E. Mueller for providing the data for the base lines in Figure 1.

Registry No. 9-H-FIH, 86-73-7; 9-H FI⁻, 12257-35-1; 9-Me-FIH, 2523-37-7; 9-Me-Fl⁻, 31468-21-0; 9-Et-FlH, 2294-82-8; 9-Et-Fl⁻, 85535-23-5; 9-*i*-Pr-FlH, 3299-99-8; 9-*i*-Pr-Fl⁻, 85535-24-6; 9-*t*-Bu-FlH, 17114-78-2; 9-t-Bu-Fl⁻, 73838-69-4; 9-t-BuCH₂-FlH, 60147-52-6; 9-t-BuCH₂-Fl⁻, 85535-25-7; 9-PhC(Me₂)CH₂-Fl⁻, 109494-93-1; 9-PhC- $(Me_2)\bar{C}H_2$ -Fl⁻, 109494-94-2; 9-PhCH₂-Fl⁻, 1572-46-9; 9-PhCH₂-Fl⁻, 53629-11-1; 9-Ph₂CH-FlH, 4425-68-7; 9-Ph₂CH-Fl⁻, 100859-14-1; 9-Ph₃C-FlH, 67635-27-2; 9-Ph₃C-Fl⁻, 109494-95-3; 9-Ph-FlH, 789-24-2; 9-Ph-Fl⁻, 31468-22-1; 9-MeS-FlH, 59431-17-3; 9-MeS-Fl⁻, 100859-09-4; 9-EtS-FlH, 60147-53-7; 9-EtS-Fl⁻, 109494-96-4; 9-i-PrS-FlH, 60147-54-8; 9-i-PrS-Fl⁻, 85535-30-4; 9-t-BuS-FlH, 60147-55-9; 9-t-BuS-Fl⁻, 85535-31-5; 9-PhS-FlH, 28114-92-3; 9-PhS-Fl⁻, 71805-72-6; 9-MeO-FlH, 19126-15-9; 9-MeO-Fl⁻, 71805-70-4; 9-EtO-FlH, 2868-70-4; 9-EtO-Fl⁻, 109494-97-5; 9-i-PrO-FlH, 88655-92-9; 9-i-PrO-Fl⁻, 109494-98-6; 9-t-BuO-FIH, 88655-93-0; 9-t-BuO-FI⁻, 109494-99-7; 9-PhO-FIH, 59431-17-3; 9-PhO-Fl⁻, 73838-68-3; 9-*i*-Pr₂N-FlH, 109495-00-3; 9-*i*-Pr₂N-Fl⁻, 109495-02-5; 9-t-Bu(2-Br)-FlH, 85535-38-2; 9-t-Bu(2-Br)-Fl⁻, 85535-33-7; 9-Me(2,7-Br₂)-FlH, 73872-42-1; 9-Me(2,7-Br₂)-Fl⁻, 73872-46-5; 9-t-Bu(2,7-Br₂)-FlH, 85535-39-3; 9-t-Bu(2,7-Br₂)-Fl⁻, 85535-34-8; 9-Br-FlH, 1940-57-4; PhC(Me₂)CH₂Cl, 515-40-2; 9-PhC- $(Me_2)CH_2$ -Fl-OH, 109495-01-4; c-C₆H₁₀ $(NO_2)Ts$, 41774-12-3; PhSO₂CH₂Br, 19169-90-5; fluorenone, 486-25-9.

Distinguishing between Polar and Electron-Transfer Mechanisms for Reactions of Anions with Alkyl Halides

F. G. Bordwell* and Craig A. Wilson

Contribution from the Department of Chemistry, Northwestern University, Evanston, Illinois 60201. Received January 12, 1987. Revised Manuscript Received April 25, 1987

Abstract: 9-Substituted fluorenide carbanions in the series 9-MeFl⁻, 9-MeO-Fl⁻, and 9-Me₂N-Fl⁻, which have nearly the same basicities but become progressively easier to oxidize, were selected as a test trio to probe for electron-transfer (e_{T}^{-}) components or radical-pair intermediates in reactions with alkyl halides. The trio members were shown to undergo e_{T}^{-} at progressively faster rates (>10² rate span) with two different types of single-electron acceptors, as expected. On the other hand, with PhCH₂Cl, *i*-BuBr, or *i*-BuI, S_N2 products were formed in a rate order that was the reverse of that established as characteristic of e_{T}^{-} . Reactions of the more sterically hindered 9-*i*-Pr₂N-Fl⁻ in with PhCH₂Cl or *i*-BuI to give S_N2 products were over 1400 times slower than those with 9-MeFl⁻, whereas the e_{T}^{-} rate with c-C₆H₁₀(NO₂)Ts was eight times faster. On the other hand, reactions of the test trio with F₃CCH₂I, which is known to react slowly in S_N2 reactions, gave the reactivity order characteristic of e_{T}^{-} , and radical-stabilizing ability of G was varied, was linear. This result shows that $E_{ox}(A^{-})$ is a good measure of e_{T}^{-} ability and that e_{T}^{-} rates are insensitive to steric effects in either the donor or acceptor that cause large rate retardations in polar S_N2 reactions.

Displacement reactions of the type shown in eq 1 are among the most common in chemistry. The overall result is transfer of a single electron from a donor anion, A^- , to the leaving atom (or group), X, of an electron acceptor, RX. These reactions have been commonly represented as occurring, however, by attack of a lone pair from A^- at the backside of R with the displacement of X^- , as shown in eq 1. Pross has emphasized recently that this representation is misleading because electrons shift singly, not in

$$A^{-} + R \stackrel{\frown}{\longrightarrow} A - R + X^{-}$$
(1)

pairs.¹ Pross and Shaik prefer to represent synchronous displacements of this type in terms of eq 2,² where an electron from A^- pairs with one from R and an electron from R is transferred to X, accompanied by fission of the R-X bond. In principle, this

$$A^{-}: + R \cdot X \to A \cdot R + : X^{-}$$
(2)

(1) Pross, A. Acc. Chem. Res. 1985, 18, 212-219. Shaik, S. S. Prog. Phys. Org. Chem. 1985, 15, 197-337.

(2) Pross, A.; Shaik, S. S. Acc. Chem. Res. 1983, 16, 363-370.

0002-7863/87/1509-5470\$01.50/0 © 1987 American Chemical Society

Scheme I

concerted ("polar") process can merge with a single-electrontransfer (SET or e_{T}) pathway wherein the AR product is formed by coupling of a geminate radical pair (eq 3).¹ In other words, the polar mechanism may contain an e_{T}^{-} component or involve a diradicaloid intermediate.

$$A^{-} + RX \rightarrow \underline{A^{*}RX^{*-}} \rightarrow \underline{A\cdot R\cdot X^{-}} \rightarrow A-R + X^{-} \qquad (3)$$

The factors determining whether or not e_{T}^{-} is favorable for a particular donor-acceptor combination have been enumerated as being (a) the standard free energy change obtained from the two redox couples and (b) the molecular and solvent reorganization accompanying the e_{T} , the size of which can be estimated from the individual identity (self-exchange) reactions.³ The radical pair mechanism (eq 3) has been recognized as a possibility for substitution reactions involving easily oxidized organometal nucleophiles by a variety of investigators.⁴ Recently the $S_N 2$ reaction between Me₃SnNa and 2-bromooctane in THF has been proposed to occur by eq 3, based on analogy with the reaction of Me₃SnNa with 6-bromo-1-heptene in THF, which was demonstrated to occur predominantly by a radical mechanism.⁵

For the past 6 years we have studied rates for $S_N 2$ reactions of families of 9-substituted fluorenide carbanions, 9-G-Fl⁻, and related families of nitranions, oxanions, and thianions, with alkyl halides in Me₂SO solution. The second-order rate constants, log k, for these reactions plot linearly with the acidities of the conjugate acids of the anions in each family, pK_{HA} .⁶ A recent analysis of the factors controlling the size of the slopes of these Brønsted plots, β_{Nu} , has led us to suggest that these S_N2 reactions take place in two stages. Formation of an ion-dipole complex occurs in the first stage, which may be of primary importance in determining the size of β_{Nu} . (β_{Nu} values range from about 0.2–0.5 for these $S_{\rm N}2$ reactions.) Bond making and bond breaking occur in the second, rate-limiting stage of the reaction.⁷ We have also found that for 9-G-Fl⁻ ion families reacting with single-electron acceptors, linear Brønsted plots, with β_{Nu} values near unity, are obtained for $e_{\rm T}^-$ reactions wherein the basicities of the 9-G-Fl⁻ ions are changed by introducing 2- and 2,7-substituents.8 When basicities are changed by also introducing substituents into the 3- or 9positions the correlation breaks down, however, because some of these substituents exert radical-stabilizing effects.^{9b} But plots of log k_{obsd} vs. $E_{ox}(A^{-})$ for e_{T}^{-} have been found to be linear for 9-G-Fl⁻ ions of all kinds, even when the 9-substituent size is varied.¹⁰ It follows that $E_{ox}(A^{-})$ provides a good model for e_{T}^{-} and that these transfers are not subject to steric effects of anywhere near the magnitude observed in $S_N 2$ reactions. We can predict

 L. Acta Chem. Scan. 1984, B38, 439–459.
 (4) (a) Dessy, R. E.; Pohl, R. L.; King, R. B. J. Am. Chem. Soc. 1966, 88, 5121–5124.
 (b) Dessy, R. E.; Weisman, P. H. Ibid. 1966, 88, 5124–5129. (c) Bilevitch, K. A.; Pubnov, N. N.; Okhlobystin, O. Yu. Tetrahedron Lett. 1968, 3465-3468. (d) Koermer, G. S.; Hall, M. L.; Traylor, T. J. J. Am. Chem. Soc. 1972, 94, 7205-7206. (e) Bank, S.; Noyd, D. A. Ibid. 1973, 95, 8203-8205. (f) Garst, J. F.; Barbas, J. T. Ibid. 1974, 96, 3239-3249. (g) Zieger, H. E.; Angres, I.; Mathisen, D. *Ibid.* **1976**, *98*, 2580-2585. (h) Russell, G. C.; Jawdosiuk, M.; Makosza, M. *Ibid.* **1979**, *101*, 2355-2359. (i) Smith, G. F.; Kuivila, H. G.; Simon, R.; Sultan, L. Ibid. 1982, 104, 6146-6147.

(5) Ashby, E. C.; DePriest, R. J. Am. Chem. Soc. 1982, 104, 6144–6146.
(6) (a) Bordwell, F. G.; Hughes, D. L. J. Org. Chem. 1980, 45, 3314–3320.
(b) Bordwell, F. G.; Hughes, D. L. Ibid. 1983, 48, 2206–2215.
(7) Bordwell, F. G.; Hughes, D. L. J. Am. Chem. Soc. 1986, 108, 3700, 3700.

3700-3709

(8) (a) Bordwell, F. G.; Clemens, A. H. J. Org. Chem. 1981, 46, 1035-1037. (b) Bordwell, F. G.; Clemens, A. H. Ibid. 1982, 47, 2510-2516. (c) Bordwell, F. G.; Clemens, A. H. Ibid. 1985, 50, 1151-1156.

(9) (a) Bordwell, F. G.; Bausch, M. J. J. Am. Chem. Soc. 1986, 108, 1979–1985.
(b) Bordwell, F. G.; Bausch, M. J. Ibid. 1986, 108, 1985–1988.
(10) Bordwell, F. G.; Bausch, M. J.; Wilson, C. A. J. Am. Chem. Soc.,

previous paper in this issue.

Table I. Rates of Reactions of 9-Substituted Fluorenide Ions (9-G-Fl⁻) with Electron Acceptors (EA) in Me₂SO at 25 °C

G	EA	$pK_{HA}(Me_2SO)$	$E_{ox}(A^{-})^{a}$	k _{rel}
Me	$c-C_6H_{10}(NO_2)Ts$	22.3	-0.355	(1.0) ^c
MeO	$c - C_6 H_{10}(NO_2) Ts$	22.1	-0.449	78
Me_2N	$c - C_6 H_{10} (NO_2) Ts$	22.5	-0.56^{b}	>100
Me	PhSO ₂ CH ₂ Cl	22.3	-0.355	$(1.0)^{d}$
MeO	PhSO ₂ CH ₂ Cl	22.1	-0.449	27
Me_2N	PhSO ₂ CH ₂ Cl	22.5	-0.56^{b}	154

 ${}^{a}E_{ox}(A^{-})$ values (irreversible) in eV obtained by cyclic voltammetry in Me₂SO solution with use of a Pt working electrode and Ag/AgI reference electrode under the conditions described previously.9 ^bReversible potential; a 40-100 mV correction needs to be added for comparison with irreversible potentials. ${}^{c}k_{obsd} = 2.0 \text{ M}^{-1} \text{ s}^{-1}$. ${}^{d}k_{obsd} =$ $1.4 \times 10^{-2} \text{ M}^{-1} \text{ s}^{-1}$.

Table II. Rate Constants for Reactions of 9-Substituted Fluorenide Ions (9-G-Fl⁻) with Benzyl Chloride and in Me₂SO Solution at 25 °C

G	р <i>К</i> _{НА}	$k_{\rm obsd} \ ({\rm M}^{-1} \ {\rm s}^{-1})$	$k_{\rm rel}$	$k_{\rm rel}({\rm corr})$
Me ₂ N	22.5	1.31	(1.0)	(1.0) ^b MeO
MeŌ	22.1	14.5	Ì1	$(0.5)^{b}$
Me	22.3	67.7	52	$(1.6)^{b}$
Me ₂ CH	23.2		$(1.0)^{a}$	~ /
MeCH ₂	22.6		27ª	
Me	22.3		33ª	

^aRate data of Bordwell and Hughes (ref 6b), corrected for differences in basicity. ^bCorrected for differences in steric effects.

from these results that a progressive increase in rates of $e_{\rm T}$ should occur along the series 9-Me-Fl⁻, 9-MeO-Fl⁻, and 9-Me₂N-Fl⁻ since these anions all have nearly the same basicities, but they have $E_{ox}(A^{-})$ values that become progressively more negative over a range of about 0.3 V (7 kcal/mol).9a Observation of a progressive increase in rates for reactions of these anions with an electrophile should then constitute a test for the presence of an e_{T} component or a radical pair intermediate, particularly since there is a progressive increase in the size of G along the series, which could lead to a reverse order of rates for an $S_N 2$ type reaction.

Results and Discussion

The proposed test for an $e_{\rm T}$ mechanism needed to be verified by carrying out reactions with known electron acceptors. Rates were first measured, therefore, with two of the electron acceptors that we have used previously⁸ (Table I).

The e_{T} reactions in Table I are believed to occur by Scheme I, where EA is the electron acceptor.

Since the e_{T}^{-} in the first step is endergonic, this step is no doubt reversible, and k_{obsd} will therefore be determined by $k_1 K_{eq}$ and/or $k_2 K_{eq}$. The overall rate spans in Table I are of the order of $10^2 - 10^3$, which is smaller than the span of about 10⁵ observed over a comparable 0.3-eV range for $e_{\rm T}^-$ reactions of 2-G-9-ArFl⁻ ions with $c-C_6H_{10}(NO_2)_2$.^{9b}

Application of the Test to Benzyl Chloride. Rate constants for a number of 9-G-Fl⁻ ions with PhCH₂Cl are summarized in Table П.

Examination of Table II shows that for $S_N 2$ reactions of our test trio with benzyl chloride a reverse order of rates to that observed in e_{T} , i.e., Me > MeO > Me₂N, obtains. As mentioned earlier, e_{T} rates of 9-alkyl-, 9-alkoxy-, and 9-(dialkylamino)fluorenide ions do not appear to be subject to steric effects.¹⁰ On the other hand, rates of $\overline{S_N}2$ reactions are known to decrease along the series 9-MeFl⁻, 9-EtFl⁻, 9-i-PrFl⁻, and 9-t-BuFl⁻.⁶ In Table II rate constants for the $S_N 2$ reactions along the series Me, MeCH₂, and Me₂CH, corrected for basicity effects,^{6b} are used as models for the series Me, MeO, and Me₂N. When this correction is made the rate differences all but disappear (see $k_{rel}(corr)$) in Table II). The test therefore fails to provide any evidence for the presence of an $e_{\rm T}$ component or a radical intermediate. It rules out the radical-pair mechanism (eq 3) since the kinetics should reveal the presence of the 9-G-Fl' radical even if it couples rapidly with the PhCH₂* radical to form the S_N2 product, 9-G-FlCH₂Ph.

⁽³⁾ Marcus, R. A. Annu. Rev. Phys. Chem. 1964, 15, 197-337. Eberson,

Table III. Rate Constants for Reactions of 9-Substituted Fluorenide Ions (9-G-Fl⁻) with Iosbutyl Bromide and Isobutyl Iodide in Me_2SO Solution at 25 °C

G	pK _{HA}	RX	$k_{\rm obsd} \ ({\rm M}^{-1} \ {\rm s}^{-1})$	k _{rel}
Me ₂ N	22.5	i-BuBr	0.28	(1.0)
MeŌ	22.1	<i>i</i> -BuBr	1.74	6.2
Me	22.3	<i>i</i> -BuBr	2.75	9.8
Me ₂ N	23.2	i-BuI	11.4	(1.0)
<i>i</i> -Pr ₂ N	20.1	i-BuI	0.06	0.0053ª
MeÕ	22.1	i-BuI	42.7	3.7
Me	22.3	i-Bul	85.0	7.5

^aAn almost identical decrease in rate constant (0.0052) was observed relative to that of $9-Me_2N-Fl^-$ ion, for the reaction with PhCH₂Cl.

The Effects of Steric Hindrance and Oxidation Potentials. It has been argued that increased steric hindrance will retard the reaction by the polar mechanism and will allow the e_{T} mechanism to emerge.¹ The formation of radical products from the reaction of *i*-Pr₂NLi and $(C_6H_5)_3$ CBr in THF was cited as an example. In Table III we present data for rates of reactions of the test trio of 9-G-Fl⁻ ions, and that of the much more sterically hindered 9-*i*-Pr₂N-Fl⁻ ion, with two alkyl halides, *i*-BuBr and *i*-BuI, that are perhaps more sterically hindered than PhCH₂Cl.

Examination of Table III shows that the relative rates with the test trio are in the same order as observed with PhCH₂Cl (Table II), although the rate spread has been decreased somewhat. The rate constant for reactions of 9-i-Pr₂N-Fl⁻ ion with i-BuI is decreased by 190-fold, relative to that of 9-Me₂N-Fl⁻, which is almost identical with the decrease observed in the reactions of these two anions with PhCH₂Cl. These large rate decreases are comparable to that observed for the reaction of PhCH₂Cl with 9-t-BuFl⁻ ion, relative to 9-MeFl⁻ ion, and are attributable to steric effects typical of the polar mechanism.^{6b} In contrast, the rate constant for e_{T} from the 9-Me₂N-Fl⁻ ion to the c-C₆H₁₀(NO₂)Ts electron acceptor is 8-fold greater than that from the 9-MeFl⁻ ion, which is more in line with their relative oxidation potentials.¹⁰ We conclude that the presence of a large steric effect in Nu⁻, coupled with a relatively negative oxidation potential, is not sufficient to allow the e_T mechanism to emerge for reaction with moderately hindered alkyl halides

The Effect of the Reduction Potential of the Alkyl Halide. The most likely explanation for the failure of the radical pair mechanism to occur for the 9-G-Fl⁻ and RX combinations reported in Tables II and III appears to be an unsuitable match between $E_{ox}(A^{-})$ and $E_{rd}(RX)$. We have found previously that singleelectron transfer does occur between 9-G-Fl⁻ ions with pK_{HA} values above 18 and PhSO₂CH₂Br and PhSO₂CH₂I halides.⁸ The success of these e_{T} 's is the result of a more positive $E_{rd}(RBr)$ (-0.6 V)^{8c} caused by the presence of the electron-withdrawing $PhSO_2$ moiety, coupled with the relative inertness of these halides to polar $S_N 2$ reactions.¹ It seemed likely that F₃CCH₂I would also possess these two characteristics. It should be relatively inert to polar $S_N 2$ reactions since F₃CCH₂Br and F₃CCH₂OTs have been shown to react with KI in acetone at rates about 6000 and 14000 times slower, respectively, than the corresponding RCH₂Br and RCH₂OTs analogues,¹¹ and the presence of the electron-withdrawing CF₃ moiety leads to an appreciably more positive E_{rd} (-1.3 V) than expected for *i*-BuI. Reaction of the test trio of 9-MeFl⁻, 9-MeO-Fl⁻, and 9-Me₂N-Fl⁻ ions with F₃CCH₂I did indeed show the increasing reactivity order expected for reaction by an $e_{\rm T}$ mechanism. The rate constants for these reactions, together with those for the 9-*i*-Pr₂N-Fl⁻ ion and a family of 9-PhCH₂Fl⁻ ions, are given in Table IV.

Examination of Table IV shows that the 9-*i*- Pr_2NFl^- ion reacts 58 times slower with *i*-BuI in an S_N2 reaction than it does with F_3CCH_2I by an e_T^- reaction. But for 9-MeFl⁻, the S_N2 reaction with *i*-BuI is 650 times *faster* than the e_T^- reaction with F_3CCH_2I ,

Table IV. Reactions of 9-G-Fl⁻ Ions with Alkyl Iodides by Polar $\mathrm{S}_{\mathrm{N}}2$ and Electron-Transfer Mechanisms

G	р <i>К</i> _{НА}	RI	$k (M^{-1} s^{-1})$	$k_{\rm rel}$
<i>i</i> -Pr ₂ N	20.8	<i>i</i> -PrCH ₂ I	0.06	(1.0)
Me_2N	22.5	<i>i</i> -PrCH ₂ I	11.4	190
MeO	22.1	i-PrCH ₂ I	42.7	712
Me	22.3	i-PrCH ₂ I	85.0	1417
<i>i</i> -Pr ₂ N	20.8	F ₃ CCH ₂ I	0.06	0.46
Me_2N	22.5	F ₃ CCH ₂ I	8.5	65.4
MeO	22.1	F ₃ CCH ₂ I	1.2	9.2
Me	22.3	F ₃ CCH ₂ I	0.13	(1.0)
PhCH ₂	21.4	F ₃ CCH ₂ I	0.021ª	
2-Br-PhCH ₂	18.9	F ₃ CCH ₂ I	0.381 ^a	
$2,7-Br_2-PhCH_2$	16.9	F ₃ CCH ₂ I	0.0442ª	

^aReference 12.

in part because of the smaller steric effect in the 9-MeFl⁻ vs. 9-*i*-Pr₂N-Fl⁻ in the S_N2 reaction and in part because of the lesser stabilization of the incipient 9-MeFl⁺ radical than the 9-*i*-Pr₂N-Fl⁺ radical in the e_{T}^{-} reaction. The kinetics of the reaction of 9-Me₂N-Fl⁻ with F₃CCH₂I could be followed for less than 1 half-life spectrophotometrically because of interference from the strongly absorbing 9-Me₂N-Fl⁻ radical being produced. Interference was worse in the 9-*i*-Pr₂N-Fl⁻ reaction with F₃CCH₂I, but fortunately the 9-*i*-Pr₂N-Fl⁺ radical is persistent and absorbs more strongly at 620 nm than does the 9-*i*-Pr₂N-Fl⁻ anion ($\lambda_{max} = 510$ nm), so that the rate of appearance of the radical could be monitored. The rate of e_{T}^{-} for 9-*i*-Pr₂N-Fl⁻ to c-C₆H₁₀(NO₂)Ts was found to be only about 2 times slower than the minimum rate estimated for 9-Me₂N-Fl⁻.

Product studies for the reactions of F_3CCH_2I with 9-MeO-Fl⁻ and 9-PhCH₂Fl⁻ ions revealed that the reactions were occurring by radical mechanisms. With 9-MeO-Fl⁻ ion, the major product was (9-MeOFl)₂ derived by coupling of the 9-MeO-Fl⁺ radical. With 9-PhCH₂Fl⁻ ion about 20% of the (9-PhCH₂Fl)₂ dimer was formed, accompanied by about 20% of 9-PhCH₂FlH and 40% of 9-PhCH=Fl. The latter products are apparently formed by disproportionation and by hydrogen atom loss from the 9-PhCH₂Fl⁺ radical, e.g.,

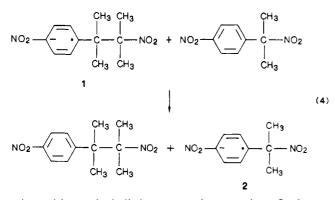
9-PhCH₂Fl[•] + 9-PhCH₂Fl[•] \rightarrow 9-PhCH₂FlH + 9-PhCH=Fl

9-PhCH₂Fl[•] + $F_3CCH_2^{\bullet} \rightarrow [F_3CCH_3] + 9$ -PhCH=Fl

No products containing the CH_2CF_3 moiety were observed in either case.

Analysis of the products formed from the reaction of the 9-*i*- Pr_2N -Fl ion with F_3CCH_2I showed 9-*i*- Pr_2N -FlH to be the major product, accompanied by small amounts of at least five other products. Formation of 9-*i*- Pr_2N -FlH in the product study probably occurs by hydrogen atom abstraction from the solvent by the persistent 9-*i*- Pr_2N -Fl radical. Reaction of this radical (or 9-*i*- Pr_2N -FlH) with F_3CCH_2 radicals apparently gives rise to three isomeric 9-(diisopropylamino)fluorenes containing a single F_3C - CH_2 moiety and two containing two F_3CCH_2 moieties (see the Experimental Section).

Steric Effects in Intermolecular Electron Transfers. It has been demonstrated in several studies that, for certain radical anions, electron transfers can occur rapidly by intramolecular routes over distances as large as 10 Å, apparently via σ bonds.¹³ Coupling of radicals and ions, such as *p*-NO₂C₆H₄C(Me)₂[•] with (CH₃)₂-C=NO₂⁻, to give a sterically crowded radical anion (1) followed by the rapid *intermolecular* electron transfer from 1 to an electron acceptor to form a new radical anion (2) are also known to occur as part of radical chain substitution reaction eq 4.¹⁴


It would appear from these examples that rapid electron transfers can occur either intra- or intermolecularly from radical

^{(11) (}a) McBee, E. T.; Battershell, R. D.; Braendlin, H. P. J. Am. Chem. Soc. **1962**, 84, 3157-3160. (b) Bordwell, F. G.; Brannen, W., Jr. Ibid. **1964**, 86, 4645-4650.

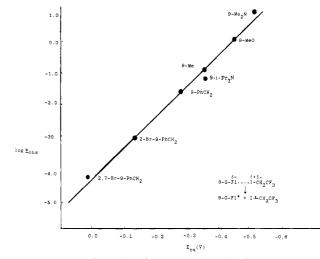
⁽¹²⁾ Mueller, M. E., unpublished results.

⁽¹³⁾ Miller, J.; Calaterra, L. T.; Closs, G. L. J. Am. Chem. Soc. 1984, 106, 3047–3049. McGourty, J. I.; Blough, N. U.; Hoffman, B. M. Ibid. 1983, 105, 4470–4472. Winkler, J. R.; Nocera, D. G.; Yocom, K. M.; Burdignon, E.; Gray, H. B. Ibid. 1982, 104, 5798–5800.

⁽¹⁴⁾ Kornblum, N. Angew. Chem., Int. Ed. Engl. 1975, 14, 734-745.

anions with seemingly little or no steric constraints. In the accompanying paper we found that a linear plot of log k_{obsd} for e_T^- to c-C₆H₁₀(NO₂)Ts vs. $E_{ox}(A^-)$ for 9-G-Fl⁻ ions, where G included R, RO, RS, and R₂N groups of varying sizes, was obtained. There was no indication of a steric retarding effect in these e_T^- reactions, although rates of the corresponding S_N2 reactions between these carbanions and PhCH₂Cl were severely retarded in some instances. Further information of this kind was obtained in the present instance by plotting log k_{obsd} for e_T^- to F₃CCH₂I vs. $E_{ox}(A^-)$ for the 9-MeFl⁻, 9-PhCH₂Fl⁻, 9-MeO-Fl⁻, 9-Me₂N-Fl⁻, and 9-*i*-Pr₂NFl⁻ ions (Figure 1).

Examination of Figure 1 shows no evidence for a steric effect. The order of rates is that expected from the oxidation potentials, i.e., $9 \cdot Me_2 N \cdot Fl^- > 9 \cdot i \cdot Pr_2 N \cdot Fl^- > 9 \cdot MeOFl^- > 9 \cdot MeFl^-$. The steric effects observed in the reaction of iodide ion with F_3CCH_2Br and $F_3CCH_2OTs^{11}$ are nowhere to be seen. Evidently e_T^- to electron acceptors is not deterred by either steric constraints in the donor or the acceptor of the type that retard $S_N 2$ reactions. The striking difference in the effects for these two types of reactions is no doubt due in part to the mode of approach of the donor in forming the initial ion-molecule complex. In the $S_N 2$ reaction the complex must be formed by approach to the carbon end of the C-I dipole, where "steric" interference is encountered in the form of the lone pairs on the fluorine atoms (eq 5). In contrast, the donor can approach the iodine end of the C-I dipole in the e_T^- reaction (eq 6).


$$Nu^{-} + \frac{F_{3}C}{H} \underbrace{C-I}_{H} \xrightarrow{F_{3}C}_{Nu} \underbrace{C-I}_{H} \xrightarrow{F_{3}C}_{Nu} \underbrace{\delta^{+}}_{H} \underbrace{I}_{H} \xrightarrow{\delta^{-}}_{I} \underbrace{I}_{H} \xrightarrow{(5)}_{H} \underbrace{I}_{H} \xrightarrow{(5)}_{H} \underbrace{I}_{H} \xrightarrow{(5)}_{H} \underbrace{I}_{H} \xrightarrow{(5)}_{H} \underbrace{I}_{H} \xrightarrow{\delta^{+}}_{H} \underbrace{\delta^{-}}_{H} \underbrace{I}_{H} \underbrace{I}_{H} \underbrace{I}_{H} \underbrace{I}_{H} \xrightarrow{\delta^{+}}_{H} \underbrace{\delta^{-}}_{H} \underbrace{I}_{H} \underbrace{I}_{H} \xrightarrow{\delta^{+}}_{H} \underbrace{\delta^{-}}_{H} \underbrace{I}_{H} \underbrace$$

Summary and Conclusions. Reactions of the trio of equally basic 9-MeFl⁻, 9-MeO-Fl⁻, and 9-Me₂N-Fl⁻ ions with PhCH₂Cl, *i*-BuBr, or *i*-BuI occurred at progressively slower rates due to increasing steric effects in the polar S_N2 reaction. The order of rates was reversed, however, for reactions of the trio with c-C₆H₁₀(NO₂)Ts, PhSO₂CH₂Cl, or F₃CCH₂I, in keeping with the progressively increasing oxidation potentials of these ions. The latter reactions gave products derived from the 9-G-Fl⁺ and the c-C₆H₁₀NO₂[•] (or PhSO₂CH₂[•]) (or F₃CCH₂[•]) radicals formed. Our test has thus failed to reveal evidence for an e_T^- component or a radical pair intermediate in reactions of simple alkyl halides with 9-G-Fl⁻ ions that have sizable oxidation potentials. A switch to an $e_T^$ mechanism has been achieved, however, with halides that have more positive reduction potentials and also offer hindrance to polar S_N2 reactions, e.g., PhSO₂CH₂Cl and F₃CCH₂I.

Experimental Section

General Procedures. Measurements of $E_{ox}(A^{-})$ and rate constant values were determined by methods described in earlier papers.⁶⁻¹⁰ The sources or syntheses of materials have also been described earlier. Mass spectra were run by H. L. Hung on a HP5984 GC/MS system.

Product Studies. The formation of S_N2 products from reactions of 9-G-Fl⁻ ions in Me₂SO solution with PhCH₂Cl, *n*-BuBr, and other simple

Figure 1. Plot of log k_{obsd} for electron transfer from 9-substituted fluorenide ions, 9-G-FI⁻, to 2-iodo-1,1,1-trifluoroethane in Me₂SO solution at 25 °C. The deviation of the 9-*i*-Pr₂N-FI⁻ ion point is caused, at least in part, by the reversibility of its oxidation potential, which causes a cathodic shift relative to the irreversible potentials of the other anions.

Table	V
-------	---

ret. time	area (%)	m/e	suggested structure
3.12	6.0	180	?
4.26	1.4	262	?
5.51	14.8	347	9-i-Pr ₂ N-FlCH ₂ CF ₃
6.66	48.5	265	9- <i>i</i> -Pr ₂ N-FlH
7.29	7.0	347	9-i-Pr ₂ N-FlCH ₂ CF ₃
7.70	18.8	347	9-i-Pr,N-FICH,CF,
8.37	1.2	429	$9-i-Pr_2N-Fl(CH_2CF_3)_2$
8.65	2.3	429	9- <i>i</i> -Pr ₂ N-Fl(CH ₂ CF ₃) ₂
	100		

alkyl halides has been observed in numerous earlier studies. A few additional studies carried out in instances where it seemed possible that S_N 2-type products might be replaced by radical-type products are listed below.

9-(Diisopropylamino)-9-isobutylfluorene. A 152-mg sample of 9-*i*-Pr₂N-FlH in Me₂SO under argon was treated with 1 equiv of CH₃SO-CH₂K in Me₂SO to effect complete deprotonation. Excess *i*-BuI was added and the solution allowed to stand for 48 h. Quenching in H₂O, Et₂O extraction, and rotoevaporation gave 144 mg of crude product containing ca. 90% of 9-*i*-Pr₂N-9-*i*-BuFl (by TLC). The NMR was complicated by the presence of diastereotopic protons; MS (*m/e*) 321 (61%), 264 (loss of C₄H₉, 24%), 306 (loss of CH₃, 3%), 221 (loss of C₃H₇ + C₄H₉, 43%), 179 (loss of C₃H₆ + C₃H₇ + C₄H₉, 93%), 165 (loss of (C₃H₇)₂N and C₄H₈, 100%).

9-MeOFT Ion with F_3CCH_2I and with c-C₆H₁₀(NO₂)Ts. Titration of 156 mg (0.796 mmol) of 9-MeO-FIH with CH₃SOCH₂K in Me₂SO followed by treatment with excess F_3CCH_2I gave, after standing overnight and the usual workup, 146 mg (94%) of crude (9-MeO-FI)₂ dimer. After washing the mixture with EtOH a colorless solid, mp 255–260 °C, was obtained (lit.¹⁵ mp 274–276 °C); NMR δ 2.98 (s, 6 H), 7.2–8.0 m, 16 H); MS (70 eV) no parent peak;¹⁵ 195 (100%, 9-MeOFI), 328 (0.5%; FI=FI), 180 (26.7%), 165 (3.1%). This dimer was also formed by reaction of 9-MeO-FIT ion with c-C₆H₁₀(NO₂)Ts (identified by the δ 2.9 peak in the NMR).

9-PhCH₂FI⁻ Ion with F_3CCH_2I. An ¹H NMR analysis of the product obtained from a reaction run under comparable conditions with 9-PhCH₂FI⁻ and F_3CCH_2I indicated the presence of about 20% of 9-PhCH₂FIH, 20% of (9-PhCH₂FI)₂, and 40% of 9-PhCH=FI.¹²

9-i-Pr₂N-FI Ion Reaction with F_3CCH_2I in Me₂SO Solution. A 151-mg (0.571 mmol) sample of 9-*i*-Pr₂N-FIH was titrated with CH₃S-OCH₂K in Me₂SO and stirred overnight with a 0.2 mL of F_3CCH_2I . Workup gave 175 mg of a complex mixture. An NMR of the crude product indicated the presence of about 50% of *i*-Pr₂N-FIH, multiple CH₂ peaks at δ 2.8-3.5, and the splitting of the isopropyl methyl peaks, suggesting that several compounds with slightly different chemical shifts

⁽¹⁵⁾ Guthrie, R. D.; Wesley, D. P.; Pendygraft, G. W.; Young, A. T. J. Am. Chem. Soc. 1976, 98, 5870-5877.

were present. GC analysis gave 8 peaks, the largest of which was identified as 9-i-Pr2N-FlH.

GC/MS analysis gave 8 peaks with the retention times, areas, and m/e values shown in Table V.

The structures of the compounds with m/e of 347 and 429 were supported further by the MS fragments associated with them:

$$347 \xrightarrow{(-i \cdot Pr_2N)} FlCH_2CF_3 (247, 100\%) \xrightarrow{(-CF_3)} FlCH_2 (178, 27.8\%) \xrightarrow{(-CH_2)} HFlH (165, 4\%)$$

Acknowledgment is made to the donors of the Petroleum Research Fund, administered by the American Chemical Society, for support of this research.

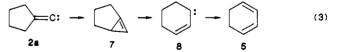
Registry No. 9-Me-Fl⁻, 31468-21-0; 9-MeO-Fl⁻, 71805-70-4; 9-Me₂N-Fl⁻, 83936-70-3; 9-i-Pr₂N-Fl⁻, 109495-02-5; 9-PhCH₂-Fl⁻, 53629-11-1; 2-Br-9-PhCH₂-Fl⁻, 103422-01-1; 2,7-Br₂-9-PhCH₂-Fl⁻, 109528-77-0; c-C₆H₁₀(NO₂)Ts, 41774-12-3; PhSO₂CH₂Cl, 7205-98-3; PhCH₂Cl, 100-44-7; *i*-BuBr, 78-77-3; *i*-BuI, 513-38-2; CF₃CH₂I, 353-83-3.

An Experimental and Theoretical Evaluation of the Intramolecular Reactions of Cyclohexyne

John Tseng, Michael L. McKee,* and Philip B. Shevlin*

Contribution from the Department of Chemistry, Auburn University, Auburn, Alabama 36849. Received January 28, 1987

Abstract: The intramolecular reactions of cyclohexyne (1a) have been explored theoretically by using ab initio calculations at the MP2/6-31G* level and experimentally by examining the ring expansion of cyclopentylidenecarbene (2a) at elevated temperatures. The calculations indicate that 1a is more stable than 2a by 19.0 kcal/mol and that the barrier for $1a \rightarrow 2a$ is 26.4 kcal/mol. Carbene 2a can rearrange to bicyclo[3.1.0] hex-5-ene and thence to cyclohexadiene with a barrier of 38.9 kcal/mol. A higher energy reaction of la is cleavage to ethylene and butatriene in a retro-Diels-Alder reaction, which is calculated to have a barrier of 46.8 kcal/mol. This retro-Diels-Alder reaction is observed experimentally when 2a is generated by the pyrolysis of the cyclopentylidene adduct of Meldrum's acid.


Although cycloalkynes with eight or more carbons¹ and certain substituted cycloheptynes² are isolable, the chemistry of the smaller ring cycloalkynes has mainly been inferred from intermolecular trapping reactions.³ Consequently, there is little known about the intramolecular reactivity of these interesting species. In this paper, we report a theoretical and experimental evaluation of the intramolecular chemistry of cyclohexyne (1a). Methods of preparing cyclohexynes include β -elimination reactions of substituted cyclohexenes⁴ and ring expansion of cyclopentylidenecarbene (2a) as illustrated in eq 1.5 Thus, carbene **2a**, when generated by

$$\begin{array}{c} & & \\ & &$$

elimination, ring expands to cyclohexyne (1a), which may then be trapped with a suitable reagent.⁵ An interesting pyrolytic method of preparing cycloalkylidenecarbenes (2) in which the cycloalkylidene derivatives of Meldrum's acid (3) are thermolyzed via methylene ketenes (4) to give 2 (eq 2) has been reported by Baxter and Brown.⁶ However, pyrolysis of Meldrum's acid adduct 3a gave only 1,3-cyclohexadiene (5) and benzene (6) (from decomposition of 5). Since ring expansion of 2a is observed when this carbene is generated at lower temperatures,⁵ these data imply that this ring expansion may be reversible and that a low-energy intramolecular pathway for 1a may simply be ring contraction

3a, n = 4 b. n = 5 c. n = 6d. n = 7 (ĆH2), =0=0 (CH2)n =C: (2) 2

to carbene 2a followed by rearrangement to 5. Rearrangement of 2a to 5 is thought to involve an initial C-H insertion to give bicyclo[3.1.0]hex-5-ene (7), which subsequently ring opens to 2-cyclohexenylidene (8) followed by rearrangement to 5 (eq 3).

In order to investigate the feasibility of rearrangement of **1a** to 1,3-cyclohexadiene, we have carried out an ab initio molecular orbital study of the energetics of this system. Since these calculations predict an additional first-order pathway for 1a, we have also reinvestigated the pyrolysis of 3a in order to search for this process.

Results

Molecular Orbital Calculations. In these ab initio calculations, which utilized the GAUSSIAN 82 program,7 geometries were optimized with the 3-21G basis set and single-point calculations were made at the 6-31G, the 6-31G*, the MP2/6-31G, and the

⁽¹⁾ Brandsma, L.; Verkruijsse, H. D. Synthesis of Acetylenes, Allenes and

⁽¹⁾ Blandma, E., Velk disse, H. D. Synness of Netry Encorrections and Cumulenes; Elsevier: Amsterdam, 1981.
(2) Krebs, A.; Kimling, H. Tetrahedron Lett. 1970, 761. Krebs, A.; Kimling, H. Angew. Chem. 1971, 83, 540.
(3) Nakagawa, M. In The Chemistry of the Carbon-Carbon Triple Bond;

 ^{(4) (}a) Favorskii, A.; Boshovskii, W. Justus Liebiqs Ann. Chem. 1912, 390,

^{122. (}b) Wittig, G.; Rohlke, R. Chem. Ber. 1961, 94, 3276. (c) Wittig, G.; Krebs, A. Chem. Ber. 1961, 94, 3260. (d) Wittig, G.; Mayer, U. Chem. Ber. (a) Gardin, B.F. 1961, 94, 5260. (d) Witig, G., Mayer, C. Rem. Ber.
1963, 96, 342. (e) Applequist, D. E.; Gebauer, P. A.; Gwynn, D. E.; O'-Connor, L. H. J. Am. Chem. Soc. 1972, 94, 4272.
(5) Erickson, K. L.; Wolinsky, J. J. Am. Chem. Soc. 1965, 87, 1142.
(6) Baxter, G. J.; Brown, R. F. Aust. J. Chem. 1978, 31, 327.

⁽⁷⁾ Binkley, J. S.; Frisch, M.; Raghavachari, K.; Fluder, E; Seeger, R.; Pople, J. A. "GAUSSIAN 82"; Carnegie-Mellon University: Pittsburgh, PA, 1982.