Lithium Iodide Promoted Rearrangement of Double Activated Alkenylcyclopropanes to Cyclopentenes or 1,3-Dienes

Aleksander N.Kasatkin*, Aleksander N.Kulak, Genrikh A.Tolstikov, and Olga V.Shitikova

Institute of Organic Chemistry, Ural Department of the USSR Academy of Sciences, Ufa, SU-450054, U.S.S.R.

Key Words: 1-ethoxycarbonyl-4-methyl-6-alkenyl-3-oxabicyclo[3.1.0]
hexan-2-ones: 1-ethoxycarbonyl-4-methyl-3-oxabicyclo[3.3.0]oct-6-en-2-ones: 3-(1,3-alkadienyl)-4-methylbutanolides: lithium iodide: rearrangement.

Abstract: Heating of bicyclic alkenylcyclopropanes <u>2a-q</u> in DMF with LiI results in good yields of cyclopentenes or conjugated dienes depending on a substrate structure.

As we reported in our recent publication, reactions of diethyl(2,3-epoxy-butylidene)malonate $\underline{1}$ with either Grignard reagents or organolithium compounds afford bicyclic lactones $\underline{2}$ in 65-85% yields.

R= alkyl, aryl, alkenyl, alkinyl.

Upon boiling in DMF with 3 equiv. LiI(0.5-2h) substrates <u>2a-q</u>, each containing an alkenyl fragment, have been found to undergo rearrangement accompanied by opening of a cyclopropane ring (Table 1).

The rearrangement of cyclopropanes $\underline{2a-c}$ having terminal double bonds gives cyclopentenes $\underline{3-5}$. $\underline{^2,3}$ Compounds $\underline{4,5}$ are found in a mixture with

decarboethoxylation products $\underline{6},\underline{7}$. Lower yields of cyclopentene $\underline{3}$ (39% or 23%) are obtained in the reaction of $\underline{2a}$ when LiI is replaced by NaI or Bu₄NI, respectively. Much lower yields of $\underline{3}$ (10-15%) are observed if HMPA or DMSO are used as solvents.

Conjugated dienes <u>8-11</u> are formed in the reaction with cyclopropanes 2d-q containing internal double bonds. According to the data of 1H and ^{13}C NMR spectroscopy, disubstituted bonds C(5)=C(6) in <u>8-10</u> and C(7)=C(8) in <u>8, 9</u> exhibit trans-configuration $(J_{H(5)-H(6)})$ and $J_{H(7)-H(8)}=14-16$ Hz). Compounds <u>10</u>, <u>11</u> represent mixtures of E- and Z-isomers by their trisubstituted bonds C(7)=C(8) and C(5)=C(6), respectively.

Neither β -styryl derivative 2h nor 1,1-diethoxycarbonyl-2-vinylcyclo-propane have been found rearranged under the conditions employed.

A typical experimental procedure for the synthesis of lactones 3-11 is as follows. A solution of cyclopropane 2a (420 mg, 2 mmole) and LiI (804 mg, 6 mmole) in DMF (10 ml) was stirred at 150° C. The reaction was monitored by TLC. After 40 min, the reaction mixture was cooled to 20° C and, following addition of water (20 ml), extracted with Et₂O (3 x 10 ml). The ether layer was dried by MgSO₄ and concentrated. Cyclopentene 3 (256 mg, 61%) was isolated as a colourless oil by column chromatography (silica gel L 40/100, hexane-Et₂O, 1:1).

¹H NMR (CDCl₃) δ 1.3(3H,t,J=7.2 Hz), 1.43(3H,d,J=6.5 Hz), 3.05(1H,ddd, J=17.4, 4.3, 2.3 Hz), 3.14(1H,ddd,J=17.4, 4.6, 2.5 Hz),3.73(1H,m), 4.25(2H,q,J=7.2 Hz), 4.94(1H,dq,J=6.5 Hz), 5.6(1H,m), 5.88(1H,m);

¹³C NMR (CDCl₃) δ 14.01q, 16.78q, 40.41t, 56.86d, 61.75s, 62.21t, 78.46d, 125.26d, 132.84d, 169.00s, 175.85s; IR (film): 3075, 1770, 1735, 1620 cm⁻¹; m/e 210 (m⁺).

A key stage in the rearrangement of the alkenylcyclopropanes 2a-g to cyclopentenes 3-5 or 1,3-dienes 8-11 (relative configurations of atoms C(3) and C(4) are completely retained in both cases) most likely represents a reversible nucleophile opening of the cyclopropane ring by anion I, hence enolates \underline{A} (1,5-addition) or \underline{B} , \underline{C} (1,7-addition) are formed. Moreover, this process is facilitated via coordination of Li to the carbonyl oxygen (the rate of electrophilic assistance decreases from Li to Na and then to Bu N , as well as if DMF is changed for DMSO or HMPA that show higher solvation towards cations 9). The derivatives \underline{A} , \underline{B} give only a starting cyclopropane during the cyclization , whereas enolate \underline{c} is capable of cyclizing to a cyclopentene 11. With the use of substrates 2d-q containing 1,2-di- or trisubstituted double bonds, steric hindrances prevent cyclization of enolate $C (R^2 \text{ and/or } R^3 = \text{ alkyl})$. However, 1,4- and/or 1,2-elimination of HI in enolates \underline{A} , \underline{B} can be realized due to the presence of related CH_2 -groups, leading to a diene system. 12 It should be noted that rigid bicyclic structures of <u>2a-q</u> are required for the reaction to be a success. 3

TABLE 1. LiI-Promoted Rearrangements of Alkenylcyclopropanes in DMF

	Substrate	Reaction time	Rearrangement Product ^a	Yield, %
<u>2a</u>		0 40min ¹⁰ 2Et	3 CO ₂ Et 3	61
<u>2b</u>		0 2h O ₂ Et	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	65 ^C
<u>2c</u>		0 2h 0 ₂ Et	3	84 ^d
<u>2d</u>		0 1.5h 0 ₂ Et	5 3 2 8 3 6	62
<u>2e</u>	Jun 1	O 1.5h CO ₂ Et	3 3 9	57
<u>2f</u>		30min CO ₂ Et	3 10(E/Z=50:50)	71
<u>2q</u>		O 1h CO2Et	11(E/Z=85:15)	75
<u>2h</u>	O O O Et	6h No reac	ction, only cyclopropane <u>2h</u> was	isolated

^aAll the compounds had satisfactory ¹H and ¹³C NMR (300 MHz) and IR spectral assignments. Their mass-spectra and elemental analysis data were acceptable. Yields are given for isolated products.

Yields are given for isolated products. Total yield of 4 and 6, 4:6=74:36. Total yield of 5 and 7, 5:7=63:37.

Thus, the rearrangement described here is a convenient stereoselective method to synthesize lactones containing cyclopentene or 1,3-diene fragments. Potential applications of the reactions to the synthesis of natural products are now under study in our laboratory.

REFERENCES AND NOTES

- Kasatkin, A.N.; Kulak, A.N.; Biktimirov, R.Kh.; Tolstikov, G.A. Tetrahedron Lett. 1990, 33, 4915.
- On different rearrangements of alkenylcyclopropanes to cyclopentenes or 1,3-dienes (either thermal or catalyzed by Lewis acids or transition metal complexes), see review: Goldschmidt, Z.; Crammer, B. Chem.Soc.Rev. 1988, 17, 229; see also: Miura, K.; Fugami, K.; Oshima, K.; Utimoto, K. Tetrahedron Lett. 1988, 29, 1543.
- 3. Hashimoto, S.; Shinoda, T.; Ikegami, S. Tetrahedron Lett. 1986, 27, 2885.
- 4. Substituted malonic acid esters are known to undergo decarboethoxylation in DMF in the presence of LiI. Partial decarboethoxylation of cyclopentene 3, resulting in 15% yield of 4-methyl-3-oxabicyclo[3.3.0]oct-6-en-2-one, is observed after longer reaction time (2 h).
- 5. Dean, P.D.G. J.Chem.Soc. 1965, 6655.
- 6. Molecular models of 3-5 and 8-11 were analyzed by the MM2 method to give the following values for the dihedral angles H(3)-C(3)-C(4)-H(4) and for the coupling constants of protons H(3), H(4) in syn- and anti-isomers: $37-38^{\circ}$, 7.4-7.6Hz(syn-); $85-86^{\circ}$, 1.9-2.0Hz(anti-). The observed values of $J_{H(3)-H(4)}$ in the range of 6.6-7.2Hz fit the syn-configuration.
- 7. Allinger, N.L. J.Am.Chem.Soc. 1977,99, 8127.
- On the nucleophile opening of double activated alkenylcyclopropanes, see review: Danishefsky, S. Acc.Chem.Res. 1979, 12, 66; see also: Schultz, A.G.; Godfrey, J.D. J.Am.Chem.Soc. 1980, 102, 2414; Hiyama, T.; Morizawa, Y.; Yamamoto, H.; Nozaki, H. Bull.Chem.Soc.Jpn. 1981,54, 2151; Burgess, K. Tetrahedron Lett. 1985, 26, 3049; Burgess, K. J.Org.Chem. 1987, 52, 2046
- Parker, A. Adv. Physical Org. Chem. 1967, 5, 173; Gutmann, V. Angew. Chem. 1967, 79, 279.
- 10. Cyclization of enolate $\underline{\mathtt{A}}$ to cyclopentene is rather an unfavorable reaction of the 5-endo-trigonal pattern.
- 11. Baldwin, J.E. J. Chem. Soc., Chem. Commun. 1976, 734.