December 1981 Communications 965

tional compounds to give sulfonylamino- and sulfonyliminosubstituted five- and six-membered heterocyclic compounds. In an extension of this reaction to other bifunctional compounds, we report the preparation of 4-oxo-1-phenyl-6-sulfonylamino-1H,4H-pyrazolo[3,4-d] [1,3]oxazines (3a-f) by condensation of N-(dichloromethylene)-sulfonamides (2a-f) and 5-amino-4-carboxy-1-phenylpyrazole⁴ (1).

$$N_{NH_{2}}^{COOH} + CI_{CI}^{CI} = N - SO_{2} - R$$
 $N_{NH_{2}}^{COOH} + CI_{CI}^{CI} = N - SO_{2} - R$
 $N_{NH_{2}}^{COOH} + CI_{CI}^{OOH} +$

The reactions are carried out by addition of compound 2 in toluene at room temperature to a suspension of compound 1 in toluene. After reflux, the crude product 3 is obtained and may be purified by recrystallization (Table). The new heterocyclic compounds 3 with a condensed pyrazole ring^{4,5} may be used as intermediates in the synthesis of 5-alkyl- and 5-aryl-1-phenyl-4-oxo-3,4-dihydropyrazolo[3,4-d]pyrimidines bearing a sulfonylamino group⁴.

Melting points were determined on a Gallenkamp capillary apparatus and are uncorrected. The I.R. spectra were recorded with a Perkin-Elmer Model 257 instrument. Microanalyses were performed at the Centro Nacional de Química Orgánica, C.S.I.C., Madrid.

4-Oxo-1-phenyl-6-sulfonylamino-1*H*,4*H*-pyrazolo[3,4-*d*] [1,3]oxazines 3; General Procedure:

To a suspension of 5-amino-4-carboxy-1-phenylpyrazole (1; 10.2 g, 0.05 mol) in toluene (125 ml) at room temperature is added dropwise with stirring a solution of the N-(dichloromethylene)-sulfonamide 2 (0.05 m) in toluene (125 ml). When the addition is complete, the mixture is refluxed during 15 h and the precipitate obtained is isolated by filtration, dried, and purified by recrystallization from acetonitrile.

Received: July 6, 1981

Preparation of 4-Oxo-1-phenyl-6-sulfonylamino-1*H*,4*H*-pyrazolo[3,4-*d*] [1,3]oxazines

F. L. MERCHÁN

Departamento de Química Organica, Universidad de Zaragoza, Zaragoza, Spain

Recently, it has been reported 1 that N-(dichloromethylene)-sulfonamides 2,3 undergo condensation with various bifunc-

Table. 4-Oxo-1-phenyl-6-sulfonylamino-1H,4H-pyrazolo[3,4-d] [1,3]oxazines 3a-f

Product No.	R	Yield [%]	m.p. [°C]	Molecular Formula ^a	IR (Nujol) [cm - ']			
					$\nu_{ m NH}$	$\nu_{C = O}$	$v_{C=N}$	v_{SO_2}
3a	CH ₃	70	147-149°	C ₁₂ H ₁₀ N ₄ O ₄ S (306.3)	3205	1790	1640	1260, 1150, 1095
3b 3c	C ₆ H ₅	85	181–183°	$C_{17}H_{12}N_4O_4S$ (368.3)	3100	1760	1620	1260, 1160, 1095
3d	p-H ₃ C—C ₆ H ₄ p-Cl—C ₆ H ₄	73 88	174-176°	$C_{18}H_{14}N_4O_4S$ (382.3)	3105	1770	1620	1275, 1145, 109:
3e	p-H ₃ CO—C ₆ H ₄	65	204-206° 191-193°	C ₁₇ H ₁₁ ClN ₄ O ₄ S (402.8)	3100	1765	1630	1255, 1175, 1095
3f	$p-O_2N-C_6H_4$	57	210-2120	C ₁₈ H ₁₄ N ₄ O ₅ S (398.3) C ₁₇ H ₁₁ N ₅ O ₆ S (413.3)	3125 3185	1780 1785	1635 1640	1295, 1145, 1090 1280, 1140, 1075

^a Satisfactory microanalyses obtained: C ± 0.23 , H ± 0.27 , N ± 0.28 , S ± 0.33 .

¹ R. Neidlein, H. Kruell, Arch. Pharm. (Weinheim, Ger.) 304, 763 (1971).

R. Gompper, W. Hägele, Chem. Ber. 99, 2885 (1966).

³ R. Gompper, R. Kunz, Chem. Ber. 99, 2900 (1966).

G. Alonso, R. Madroñero, L. Nebreda, Ann. Quim. 1976, 897.
 C. C. Cheng, R. K. Robins, J. Org. Chem. 23, 191 (1958).