This article was downloaded by: [Gazi University] On: 11 January 2015, At: 09:15 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK



# Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/gpss20

Preparation of Optically Active 4-Aminopyrrolidines by Radical Addition/Cyclization to Chiral N-(2-

## (Methoxyimino)Ethyl)- $\beta$ -Amino- $\alpha$ -Methylene Esters

Akio Kamimura<sup>a</sup>, Yu Yamane<sup>a</sup> & Hidemitsu Uno<sup>b</sup>

<sup>a</sup> Department of Applied Molecular Bioscience , Graduate School of Medicine, Yamaguchi University , Ube , 755-8611 , Japan

<sup>b</sup> Department of Chemistry, Graduate School of Science and Engineering, Ehime University, Matsuyama, 790-8577, Japan Accepted author version posted online: 24 Oct 2012.Published online: 29 May 2013.

To cite this article: Akio Kamimura , Yu Yamane & Hidemitsu Uno (2013) Preparation of Optically Active 4-Aminopyrrolidines by Radical Addition/Cyclization to Chiral N-(2-(Methoxyimino)Ethyl)- $\beta$ -Amino- $\alpha$ -Methylene Esters, Phosphorus, Sulfur, and Silicon and the Related Elements, 188:4, 356-366, DOI: <u>10.1080/10426507.2012.736893</u>

To link to this article: <u>http://dx.doi.org/10.1080/10426507.2012.736893</u>

### PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing,

systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at <a href="http://www.tandfonline.com/page/terms-and-conditions">http://www.tandfonline.com/page/terms-and-conditions</a>





#### PREPARATION OF OPTICALLY ACTIVE 4-AMINOPYRROLIDINES BY RADICAL ADDITION/CYCLIZATION TO CHIRAL N-(2-(METHOXYIMINO)ETHYL)- $\beta$ -AMINO- $\alpha$ -METHYLENE ESTERS

#### Akio Kamimura,<sup>1</sup> Yu Yamane,<sup>1</sup> and Hidemitsu Uno<sup>2</sup>

<sup>1</sup>Department of Applied Molecular Bioscience, Graduate School of Medicine, Yamaguchi University, Ube 755-8611, Japan <sup>2</sup>Department of Chemistry, Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Japan

#### **GRAPHICAL ABSTRACT**



**Abstract** Optically active 4-aminopyrolidines were prepared by radical cyclization induced by addition of tin radical to N-(2-(methoxyimino)ethyl)- $\beta$ -amino- $\alpha$ -methylene esters, which were readily prepared by Michael/aldol domino reaction to chiral sulfinimines.

Keywords Radical cyclization; radical addition; 4-aminopyrroidine

#### INTRODUCTION

Radical cyclization is a good reaction for constructing carbo- or heterocyclic compounds, and frequently used in organic synthesis.<sup>1</sup> Among many known generation of radicals, tin radical chemistry is recognized the most useful methodology and widely applied for synthetic reactions. Tin radical is usually generated by thermal treatment with tin hydride in the presence of radical initiator such as AIBN. Bu<sub>3</sub>SnH is usually the first choice of tin hydride reagent because it is readily available and the radical process with it is highly efficient. The three butyl groups on tin atom are normally inert in the reaction. However, we have recently found the reaction in which one of the butyl group was kicked out by  $S_H2$ 

Received 28 September 2012; accepted 30 September 2012.

The authors are grateful to financial support from Yamaguchi University based on The YU Strategic Program for Fostering Research Activities (2010–2011).

Address correspondence to Akio Kamimura, Department of Applied Molecular Bioscience, Graduate School of Medicine, Yamaguchi University, Ube 755-8611, Japan. E-mail: ak10@yamaguchi-u.ac.jp

process<sup>2</sup> by vinyl radical and butyl radical and stannacyclopentane were generated in high yields.<sup>3</sup> This is a very new process and we were interested in the extension of the reaction with other radical accepter such as oxime ethers,<sup>4</sup> which were expected to give bicyclic stannapyrrolidines containing tin-nitrogen bond. In this article, we report that optically active N-(2-(methoxyimino)ethyl)- $\beta$ -amino- $\alpha$ -methylene esters<sup>5</sup> underwent simple radical addition/cyclization to give chiral 4-aminopyrrolidines in good yield.

#### **RESULTS AND DISCUSSION**

The precursor of the radical cyclization was prepared by treatment of *N*-allyl- $\beta$ -amino- $\alpha$ -methylene ester **1** under oxidative conditions followed by oxime formation. The results are summarized in Scheme 1.



Scheme 1 Reagents and conditions: i, OsO<sub>4</sub>, 2,6-lutidine,NalO<sub>4</sub>, dioxane/Water (3:1), r.t.; ii, NH<sub>2</sub>OMe.HCl, NaOAc, MeOH, r.t.

For example, compound **1a** underwent oxidation at the *N*-allylic unit that firstly afforded corresponding diol, which then gave aldehyde **2a** through carbon–carbon bond cleavage by the presence of NaIO<sub>4</sub>. During the oxidation with OsO<sub>4</sub> took place chemselectively and the  $\alpha$ ,  $\beta$ -unsaturated alkene unit survived under these conditions. Exposure of **2a** to hydroxylamine methyl ether resulted in desired formation of oxime ether smoothly and cyclization precursor **3a** was isolated in 70% yield in two steps.

With desired precursors 3 in hand, we examined radical addition/cyclization for these compounds by treatment with Bu<sub>3</sub>SnH. The results are summarized in Scheme 2.



Scheme 2 Reagents and conditions: i, Bu<sub>3</sub>SnH, Et<sub>3</sub>B, toluene, r.t.

#### A. KAMIMURA ET AL.

Tin radical was generated by  $Et_3B$  in the presence of air. The reaction took place smoothly and the precursor **3** was consumed smoothly. For example, precursor **3a** disappeared within 2 h and two diastereomers of **4a** was produced. <sup>1</sup>H NMR spectrum for compound **4a** revealed that both isomers of **4a** contained Bu<sub>3</sub>Sn unit. The terminal methyl groups derived from Bu<sub>3</sub>Sn radical were observed as a single triplet. This observation suggested that the butyl groups attaching to tin atom was chemically equivalent. Thus, the formation of **5** did not happen during the reaction although we expected to obtain bicyclic azastannolane **5** during the reaction. The S<sub>H</sub>2 substitution on tin atom by aminyl radical did not takes place from the reaction of **3**.

The structure of compound 4 was unambiguously determined by X-ray crystallographic analyses.<sup>6</sup> For example, the two diastereomers of compound 4e was separated by careful flash chromatography and these isomers were isolated as solid products. X-ray crystallographic analyses for both compounds revealed *trans* structure for major 4e and *cis* structure for minor 4e. It was interesting that the both isomer had the same configuration at the quaternary center and the difference was the configuration at methoxyamino carbon. Other derivatives for compounds 4 showed a similar pattern in NMR so all configurations of the two isomers of 4 were determined.

Although the expected  $S_H2$  process to give compound 5 did not occur from the precursor 3, we assumed the reaction mechanism as shown in Scheme 3.



Compound **3** underwent radical addition by  $Bu_3Sn$  radical to give intermediate **A**, which contained the two conformational state, *trans*-**A** and *cis*-**A**. The difference of them is conformation of the oxime ether unit, which occupies pseudoequatorial position in *trans*-**A** and pseudoaxial position in *cis*-**A**. It should be noted that the favorable conformation at radical center was always the same and the ester group occupies pseudoequatorial position, because both isomers of **4** have the same configuration at the quaternary carbon as mentioned

before. The radical in intermediate **A** attacks the oxime ether unit in a 5-exo-trig manner to give intermediate *trans*-**B** and *cis*-**B**. If the resulting aminyl radical attack the tin atom, desired  $S_H 2$  reaction occurs and bicyclic azastannolane **5** should be formed. However, this process never occurs. Instead, simple hydrogen abstraction from  $Bu_3SnH$  dominates and *trans*-**4** and *cis*-**4** were produced exclusively. One reason why no  $S_H 2$  process happens is hydrogen abstraction from intermediate **B** should be much faster than the  $S_H 2$  process. Also, geometry of aminyl radical in *trans*-**B** and *cis*-**B** should be important; the radical center should be too far from the tin atom to progress efficient  $S_H 2$  process. Unfortunately, *cis/trans* selectivity for the formation of **4** was in a moderate level. This is probably due to energy differences between intermediates *cis*-**A** and *trans*-**A** are close and probably the stereoselectivity just reflected the conformational ratio for these two intermediates.

#### CONCLUSION

Radical treatment of N-(2-(methoxyimino)ethyl)- $\beta$ -amino- $\alpha$ -methylene esters **3** lead an efficient formation of 4-aminopyrrolidine derivatives through radical addition/cyclization process. The aminyl radical intermediate did not undergo S<sub>H</sub>2 process but simple hydrogen abstraction from Bu<sub>3</sub>SnH dominates. Since the precursors of the reaction are readily prepared in optically active form, the present method will provide a useful preparation of multifunctionalized 4-aminopyrrolidine derivatives.

#### **EXPERIMENTAL**

**General:** All <sup>1</sup>H and <sup>13</sup>C NMR spectra were recorded on JEOL JNM-ECA500 Delta2 (500 MHz for <sup>1</sup>H and 126 MHz for <sup>13</sup>C) spectrometer. High-resolution mass spectra (HRMS) were measured at Tokiwa Instrumentation Center, Yamaguchi University. Compounds 1 were prepared by the reported methods.<sup>5</sup>

Preparation of (S)-tert-butyl 2-((N-(2-(methoxyimino)ethyl)-4-methylphenylsulfonamido)(p-tolyl)methyl)acrylate (3a): A mixture of 1a (1.4170 g, 3,21 mmol), 2,6-lutidine (0.75 mL, 6.47 mmol), OsO4 (0.033 g, 0.130 mmol, 4 mol%) and NaIO4 (2.0689 g, 9.67 mmol) in dioxane-water (35 mL, 3:1 v/v) was stirred at room temperature for 90 min. Saturated Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>aq (60 mL) and brine (20 mL) was added to the reaction mixture and the resulting mixture was extracted with  $CH_2Cl_2$  (60 mL  $\times$  5). Organic phase was combined, washed with 1M HCl (5 mL  $\times$  2) and saturated Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> (20 mL  $\times$  1), and dried over Na<sub>2</sub>SO<sub>4</sub>. After filtration, the filtrate was concentrated in vacuo and the residue was subjected to flash chromatography (silica gel/hexane-EtOAc 15:1 then 2:1 v/v) to give aldehyde **2a** in 73% yield (1.0437g, 2.36 mmol), which was used for the next step without further purification. Colorless oil;  $[\alpha]_D$  +45.6 (c 1.03, CHCl<sub>3</sub>); <sup>1</sup>H NMR  $(500 \text{ MHz}, \text{CDCl}_3) \delta 8.85 \text{ (s, 1H)}, 7.72 \text{ (d, } J = 8.2 \text{ Hz}, 2\text{H}), 7.30 \text{ (d, } J = 8.0 \text{ Hz}, 2\text{H}),$ 7.06 (d, J = 7.9 Hz, 2H), 6.97 (d, J = 8.1 Hz, 2H), 6.25 (s, 1H), 6.19 (d, J = 1.6 Hz, 1H), 5.18 (d, J = 1.9 Hz, 1H), 3.84 (d, J = 19.6 Hz, 1H), 3.54 (dd, J = 18.7, 2.1 Hz, 1H), 2.44 (s, 3H), 2.28 (s, 3H), 1.24 (s, 9H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 199.2, 164.9, 144.2, 139.9, 138.6, 136.6, 129.9, 129.8, 128.4, 127.5, 125.6, 81.8, 61.7, 53.4, 27.8, 21.7, 21.2; and HRMS (ESI M + MeOH + Na) m/z 498.1932. Calcd for  $C_{25}H_{33}NNaO_6S$  498.1926.

To a mixture of NaOAc (0.1879 g, 2.29 mmol) and *p*-methylhydroxylamine hydrochloride (0.1908 g, 2.28 mmol) in MeOH (40 mL) was added **2a** (0.6730 g, 1.52 mmol) in MeOH (10 mL) and the reaction mixture was stirred for 23 h at room temperature. Water (20 mL) was added and the resulting mixture was extracted with  $CH_2Cl_2$  (20 mL × 3).

Organic phase was combined, washed with water (20 mL × 2) and dried over Na<sub>2</sub>SO<sub>4</sub>. After filtration, the filtrate was concentrated in vacuo and the residue was subjected to flash chromatography (silica gel/hexane-EtOAc 15:1 v/v) to give oxime ether **3a** in 94% yield (0.6887 g, 1.40 mmol). White solid; mp 62–63 °C; The enantiomeric purity was determined by HPLC analysis (230 nm, 30 °C) t<sub>R</sub> 16.3 min (minor); t<sub>R</sub> 17.4 min (major) [CHIRALPAK IC (0.46 cm × 25 cm) (from Daicel Chemical Ind., Ltd.) hexane/*i*-PrOH, 88/12, 1.00 mL/min] as 95%ee; [ $\alpha$ ]<sub>D</sub> +89.4 (c 1.03, CHCl<sub>3</sub>); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.70 (d, *J* = 8.3 Hz, 2H), 7.27 (d, *J* = 8.1 Hz, 2H), 7.04 (d, *J* = 7.9 Hz, 2H), 6.90 (d, *J* = 1.9 Hz, 1H), 3.99 (dd, *J* = 16.6, 6.1 Hz, 1H), 3.69 (dd, *J* = 16.6, 5.2 Hz, 1H), 2.42 (s, 3H), 2.29 (s, 3H), 1.25 (s, 9H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  165.0, 146.8, 143.7, 140.4, 138.1, 137.3, 134.2, 129.70, 129.5, 128.5, 127.7, 126.0, 81.6, 61.8, 61.5, 44.0, 27.8, 21.7, 21.2; and HRMS (ESI M + H) m/z 473.2064. Calcd for C<sub>25</sub>H<sub>33</sub>N<sub>2</sub>O<sub>5</sub>S 473.2110.

Other compounds 3 were prepared in a similar manner.

(S)-tert-butyl 2-((*N*-(2-(methoxyimino)ethyl)-4-methylphenylsulfonamido)(phe nyl)- methyl)acrylate (3b): White solid; mp 82–83 °C; the enantiomeric purity was determined by HPLC analysis (230 nm, 30 °C) t<sub>R</sub> 15.7 min (minor); t<sub>R</sub> 16.9 min (major) [CHIRALPAK IC (0.46 cm × 25 cm) (from Daicel Chemical Ind., Ltd.) hexane/*i*-PrOH, 88/12, 1.00 mL/min] as 92%ee;  $[\alpha]_D$  +77.9 (CHCl<sub>3</sub>, c 1.02); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.74–7.67 (m, 2H), 7.29–7.21 (m, 5H), 7.07–7.01 (m, 2H), 6.54 (t, *J* = 5.6 Hz, 1H), 6.30 (s, 1H), 6.18 (s, 1H), 4.01 (ddd, *J* = 16.5, 6.0, 2.5 Hz, 1H), 3.75–3.66 (m, 1H), 3.60 (s, 3H), 2.42 (s, 3H), 1.24 (s, 9H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  164.92, 146.63, 140.20, 137.33, 137.25, 129.81, 129.72, 128.83, 128.60, 128.23, 127.65, 126.35, 81.65, 61.99, 61.47, 44.08, 27.75, 21.67; and HRMS (ESI M + H) m/z 459.1960. Calcd for C<sub>24</sub>H<sub>31</sub>N<sub>2</sub>O<sub>5</sub>S 459.1954.

(S)-tert-butyl 2-((4-chlorophenyl)(*N*-(2-(methoxyimino)ethyl)-4-methylphenylsulfonamido)methyl)acrylate (3c): White solid; mp 82–83 °C; the enantiomeric purity was determined by HPLC analysis (230 nm, 30 °C) t<sub>R</sub> 16.3 min (minor); t<sub>R</sub> 17.4 min (major) [CHIRALPAK IC (0.46 cm × 25 cm) (from Daicel Chemical Ind., Ltd.) hexane/*i*-PrOH, 88/12, 1.00 mL/min] as 92%ee;  $[\alpha]_D$  +58.9 (CHCl<sub>3</sub>, c 1.02); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.67 (d, J = 8.2 Hz, 2H), 7.27 (d, J = 8.1 Hz, 2H), 7.23 (d, J = 8.4 Hz, 2H), 7.00 (d, J = 8.4 Hz, 2H), 6.69 (t, J = 5.7 Hz, 1H), 6.29 (d, J = 1.6 Hz, 1H), 6.15 (s, 1H), 5.38 (d, J = 1.9 Hz, 1H), 3.99 (dd, J = 16.5, 5.3 Hz, 1H), 3.69 (dd, J = 16.6, 5.1 Hz, 1H), 3.61 (s, 3H), 2.42 (s, 3H), 1.27 (s, 9H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  164.7, 146.3, 144.0, 139.6, 137.1, 136.0, 134.2, 130.0, 129.8, 129.0, 127.6, 126.8, 81.9, 61.6, 61.2, 44.2, 27.8, 21.7; and HRMS (ESI M + H) m/z 493.1581. Calcd for C<sub>24</sub>H<sub>30</sub>ClN<sub>2</sub>O<sub>5</sub>S 493. 1564.

(S)-tert-butyl 2-((*N*-(2-(methoxyimino)ethyl)-4-methylphenylsulfonamido)(4-m ethoxyphenyl)methyl)acrylate (3d): Colorless oil; the enantiomeric purity was determined by HPLC analysis (230 nm, 40 °C) t<sub>R</sub> 44.4 min (minor); t<sub>R</sub> 47.1 min (major) [CHIRALPAK ID (0.46 cm × 25 cm) (from Daicel Chemical Ind., Ltd.) hexane/*i*-PrOH, 90/10, 0.50 mL/min] as 98%ee;  $[\alpha]_D$  +69.3 (CHCl<sub>3</sub>, c 1.01); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.70 (d, *J* = 8.4 Hz, 2H), 7.28 (d, *J* = 7.7 Hz, 2H), 6.95 (d, *J* = 8.7 Hz, 2H), 6.77 (d, *J* = 8.8 Hz, 2H), 6.59 (t, *J* = 5.7 Hz, 1H), 6.27 (d, *J* = 1.8 Hz, 1H), 6.12 (s, 1H), 5.41 (d, *J* = 1.9 Hz, 1H), 4.00 (dd, *J* = 16.7, 5.8 Hz, 1H), 3.76 (s, 3H), 3.68 (dd, *J* = 16.6, 5.4 Hz, 1H), 3.62 (s, 3H), 2.43 (s, 3H), 1.26 (s, 9H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  165.0, 159.5, 146.8, 143.7, 140.5, 137.3, 129.8, 129.7, 129.2, 127.6, 125.7, 114.1, 81.6, 61.5, 61.5, 55.3, 44.0, 27.8, 21.7; and HRMS (ESI M + H) m/z 489.2068. Calcd for C<sub>25</sub>H<sub>33</sub>N<sub>2</sub>O<sub>6</sub>S 489. 2059. (S)-tert-butyl 2-((*N*-(2-(methoxyimino)ethyl)-4-methylphenylsulfonamido)(o-to lyl)- methyl)acrylate (3e): Colorless oil; the enantiomeric purity was determined by HPLC analysis (230 nm, 30 °C) t<sub>R</sub> 24.4 min (major); t<sub>R</sub> 34.8 min (minor) [CHIRALPAK AD (0.46 cm × 25 cm) (from Daicel Chemical Ind., Ltd.) hexane/*i*-PrOH, 98/2, 0.80 mL/min] as 97%ee;  $[\alpha]_D$  +135.0 (CHCl<sub>3</sub>, c 1.02); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.67 (d, *J* = 8.3 Hz, 2H), 7.25 (d, *J* = 7.8 Hz, 2H), 7.21–7.13 (m, 2H), 7.07 (td, *J* = 7.3, 2.0 Hz, 1H), 6.96 (dd, *J* = 7.7, 1.2 Hz, 1H), 6.55 (t, *J* = 5.5 Hz, 1H), 6.39 (s, 1H), 6.24 (d, *J* = 1.6 Hz, 1H), 5.08 (d, *J* = 1.8 Hz, 1H), 3.98 (ddd, *J* = 16.7, 5.4, 0.8 Hz, 1H), 3.71 (dd, *J* = 16.8, 5.6 Hz, 1H), 3.56 (s, 3H), 2.41 (s, 3H), 2.39 (s, 3H), 1.21 (s, 9H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  164.8, 146.6, 143.8, 140.3, 137.6, 136.8, 135.3, 131.04, 129.6, 128.4, 128.1, 127.9, 126.2, 125.7, 81.6, 61.4, 59.2, 44.1, 27.7, 21.7, 19.5; and HRMS (ESI M + H) m/z 473.2146. Calcd for C<sub>25</sub>H<sub>33</sub>N<sub>2</sub>O<sub>5</sub>S 473.2110.

(S)-tert-butyl 2-((*N*-(2-(methoxyimino)ethyl)-4-methylphenylsulfonamido)-(na phthalen-2-yl)methyl)acrylate (3f): White solid; mp 137–138 °C; the enantiomeric purity was determined by HPLC analysis (230 nm, 35 °C) t<sub>R</sub> 28.3 min (major); t<sub>R</sub> 35.5 min (minor) [CHIRALPAK AD (0.46 cm × 25 cm) (from Daicel Chemical Ind., Ltd.) hexane/*i*-PrOH, 95/5, 1.00 mL/min] as 95%ee; [ $\alpha$ ]<sub>D</sub> +113.0 (c 1.03, CHCl<sub>3</sub>); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.81–7.76 (m, 1H), 7.74 (d, J = 8.7 Hz, 2H), 7.72 (d, J = 8.3 Hz, 2H), 7.67–7.62 (m, 1H), 7.51–7.42 (m, 2H), 7.26 (d, J = 7.9 Hz, 2H), 7.18 (dd, J = 8.5, 1.9 Hz, 1H), 6.64 (t, J = 5.6 Hz, 1H), 6.36 (s, 2H), 5.43 (d, J = 1.5 Hz, 1H), 4.03 (dd, J = 16.5, 5.6 Hz, 1H), 3.79 (dd, J = 165.0, 146.5, 143.8, 140.1, 137.2, 134.6, 133.2, 133.0, 129.8, 128.8, 128.1, 127.7, 127.6, 127.4, 126.7, 126.6, 126.5, 126.5, 81.8, 62.0, 61.2, 44.3, 27.8, 21.7; and HRMS (ESI M + H) m/z 509.2105. Calcd for C<sub>28</sub>H<sub>33</sub>N<sub>2</sub>O<sub>5</sub>S 509.2110.

(R)-tert-butyl 2-((*N*-(2-(methoxyimino)ethyl)-4-methylphenylsulfonamido)- (thi ophen-2-yl)methyl)acrylate (3g): Colorless oil; the enantiomeric purity was determined by HPLC analysis (230 nm, 40 °C) t<sub>R</sub> 38.9 min (minor); t<sub>R</sub> 41.7 min (major) [CHIRALPAK IC (0.46 cm × 25 cm) (from Daicel Chemical Ind., Ltd.) hexane/*i*-PrOH, 95/5, 0.80 mL/min] as 94%ee;  $[\alpha]_D$  +80.8 (CHCl<sub>3</sub>, c 1.03); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.68 (d, *J* = 8.4 Hz, 2H), 7.26 (d, *J* = 8.5 Hz, 2H), 7.18 (dd, *J* = 5.1, 1.2 Hz, 1H), 6.87 (dd, *J* = 5.1, 3.5 Hz, 1H), 6.76 (dd, *J* = 2.8, 1.8 Hz, 1H), 6.73 (dd, *J* = 6.1, 5.3 Hz, 1H), 6.37 (d, *J* = 1.8 Hz, 1H), 6.32 (d, *J* = 1.6, 5.2 Hz, 1H), 3.68 (s, 3H), 2.42 (s, 3H), 1.34 (s, 9H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  164.7, 146.5, 143.8, 140.6, 140.1, 136.8, 129.7, 127.7, 127.7, 126.9, 126.4, 126.3, 81.9, 61.6, 57.2, 44.0, 27.9, 21.7; and HRMS (ESI M + H) m/z 465.1528. Calcd for C<sub>22</sub>H<sub>29</sub>N<sub>2</sub>O<sub>5</sub>S<sub>2</sub> 465.1518.

(S)-tert-butyl 3-(*N*-(2-(methoxyimino)ethyl)-4-methylphenylsulfonamido)-2- me thylenehexanoate (3h): Pale yellow oil; the enantiomeric purity was determined by HPLC analysis (230 nm, 35 °C) t<sub>R</sub> 16.4 min (major); t<sub>R</sub> 19.4 min (minor) [CHIRALPAK AD (0.46 cm × 25 cm) (from Daicel Chemical Ind., Ltd.) hexane/*i*-PrOH, 95/5, 0.80 mL/min] as 97%ee;  $[\alpha]_D$  –38.1 (c 1.00, CHCl<sub>3</sub>); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  (a mixture of E/Z isomers) 7.71 (dd, J = 8.4, 2.4 Hz, 2H for one isomer), 7.70 (dd, J = 8.4, 2.4 Hz, 2H for other isomer), 7.33–7.16 (m, 3H), 6.55 (t, J = 4.1 Hz, 1H for one isomer), 6.19 (s, 1H for one isomer), 5.03 (t, J = 7.6 Hz, 1H for one isomer), 4.96 (t, J = 7.6 Hz, 1H for other isomer), 4.10 (dd, J = 19.3, 4.4 Hz, 1H), 3.86 (dd, J = 13.7, 7.9 Hz, 1H), 3.84 (d, J = 0.9 Hz, 3H for one isomer), 3.78 (s, 3H for other isomer), 2.39 (s, 3H), 1.75–1.50 (m, 4H), 1.43 (s, 9H for one isomer), 1.42 (s, 9H for other isomer), 0.89 (td, J = 7.4 Hz, 3H for one isomer), 0.88 (td, J = 7.4 Hz, 3H for other isomer); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  (a mixture of E/Z isomers) 165.54, 165.42, 150.16, 147.90, 143.31, 143.31, 140.06, 140.05, 137.60, 137.53, 137.53, 129.48, 129.48, 127.84, 127.76, 126.41, 126.37, 81.54, 81.43, 62.11, 61.66, 57.20, 56.99, 43.20, 39.41, 33.76, 33.39, 28.03, 21.58, 21.57, 19.80, 19.78, 13.80, 13.74; and HRMS (ESI M + H) m/z 425.2098. Calcd for C<sub>21</sub>H<sub>33</sub>N<sub>2</sub>O<sub>5</sub>S 425.2110.

**Preparation of (2S,3S)-tert-butyl 4-(methoxyamino)-2-(p-tolyl)-1-tosyl-3-**((tributylstannyl)methyl)pyrrolidine-3-carboxylate (4a): Compound 3a (0.2363 g, 0.500 mmol) was dissolved in toluene (50 mL) and Bu<sub>3</sub>SnH (0.26 mL, 0.981 mmol) and Et<sub>3</sub>B (1 M in hexane, 1.0 mL, 1 mmol) were added. The resulting solution was purged by air for 5 min and stirred for 2 h at room temperature. Solvent was evaporated and the residue was subjected to flash chromatography (silica gel/hexane-EtOAc 25:1 then 5:1 v/v) to give 4a in 76% yield (0.3049 g, 0.379 mmol). HPLC analysis revealed *trans/cis* ratio was 64/36. HRMS (ESI M + H) m/z 765.3333. Calcd for C<sub>37</sub>H<sub>61</sub>N<sub>2</sub>O<sub>5</sub>SSn 765. 3323.

Careful chromatographic treatment separated *trans*-4a and *cis*-4a in pure form.

*trans*-4a: Colorless oil; the enantiomeric purity was determined by HPLC analysis (230 nm, 30 °C) t<sub>R</sub> 10.6 min (minor); t<sub>R</sub> 17.5 min (major) [CHIRALPAK IC (0.46 cm × 25 cm) (from Daicel Chemical Ind., Ltd.) hexane/*i*-PrOH, 90/10, 0.80 mL/min] as 95%eee;  $[\alpha]_D$  -27.2 (c 1.03, CHCl<sub>3</sub>); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.36 (d, J = 8.1 Hz, 2H), 7.08 (d, J = 8.0 Hz, 2H), 6.98 (d, J = 7.7 Hz, 2H), 6.86 (d, J = 7.5 Hz, 2H), 5.90 (d, J = 9.5 Hz, 1H), 5.05 (s, 1H), 3.85 (dd, J = 9.3, 7.2 Hz, 1H), 3.77–3.63 (m, 1H), 3.54 (dt, J = 9.6, 7.6 Hz, 1H), 3.43 (s, 3H), 2.35 (s, 3H), 2.30 (s, 3H), 1.48 (s, 9H), 1.35–1.14 (m, 12H), 0.82 (t, J = 7.2 Hz, 9H), 0.66 (dd, J = 9.2, 7.2 Hz, 6H), 0.52 (d, J = 12.9 Hz, 1H), 0.47 (d, J = 13.0 Hz, 1H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  173.4, 142.8, 137.3, 136.6, 135.3, 129.1, 128.8, 128.4, 127.3, 82.5, 70.5, 67.3, 61.7, 59.4, 51.7, 29.1, 28.1, 27.5, 21.5, 21.2, 11.1

*cis*-**4a**: <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.58 (d, J = 8.2 Hz, 2H), 7.24 (d, J = 8.6 Hz, 2H), 7.11 (d, J = 7.6 Hz, 2H), 7.07 (d, J = 8.2 Hz, 2H), 5.33 (d, J = 9.0 Hz, 1H), 4.78 (s, 1H), 3.77–3.67 (m, 2H), 3.64–3.54 (m, 1H), 3.45 (s, 3H), 2.39 (s, 3H), 2.32 (s, 3H), 1.32 (s, 9H), 1.31–1.12 (m, 12H), 0.81 (t, J = 7.2 Hz, 9H), 0.71–0.62 (m, 6H), 0.51 (d, J = 13.0 Hz, 1H), 0.26 (d, J = 12.9 Hz, 1H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  173.6, 143.4, 137.3, 135.3, 134.1, 129.5, 128.7, 128.3, 128.0, 81.9, 71.2, 64.0, 62.0, 60.2, 51.5, 29.1, 27.8, 27.5, 21.6, 21.3, 13.8, 10.9.

Other compound **4** were prepared in a similar manner.

(2S,3S)-tert-butyl 4-(methoxyamino)-2-phenyl-1-tosyl-3-((tributylstannyl)methyl)-pyrrolidine-3-carboxylate (4b): HRMS (ESI M + H) m/z 751.3202. Calcd for  $C_{36}H_{59}N_2O_5SSn 751.3167$ .

*trans*-**4b** White solid; mp 55–56 °C;  $[\alpha]_D$  -24.2 (c 1.01, CHCl<sub>3</sub>); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.36 (d, J = 8.2 Hz, 2H), 7.26–7.13 (m, 3H), 7.09 (d, J = 8.1 Hz, 2H), 6.97 (d, J = 6.0 Hz, 2H), 5.92 (d, J = 9.7 Hz, 1H), 5.10 (s, 1H), 3.86 (dd, J = 9.3, 7.2 Hz, 1H), 3.70 (dd, J = 9.4, 7.9 Hz, 1H), 3.54 (dt, J = 9.7, 7.5 Hz, 1H), 3.43 (s, 3H), 2.35 (s, 3H), 1.49 (s, 9H), 1.40–1.13 (m, 12H), 0.81 (t, J = 7.2 Hz, 9H), 0.67 (dd, J = 9.2, 6.8 Hz, 6H), 0.52 (d, J = 12.9 Hz, 1H), 0.42 (d, J = 13.0 Hz, 1H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  173.3, 142.9, 138.3, 136.5, 129.2, 128.3, 128.1, 127.7, 127.3, 82.6, 70.7, 67.2, 61.7, 59.4, 51.7, 29.1, 28.1, 27.4, 21.5, 13.8, 11.1.

*cis*-4b: <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.57 (d, J = 8.2 Hz, 2H), 7.30–7.21 (m, 7H), 5.32 (d, J = 9.0 Hz, 1H), 4.83 (s, 1H), 3.80–3.70 (m, 2H), 3.65–3.58 (m, 1H), 3.46 (s, 3H), 2.39 (s, 3H), 1.34 (s, 9H), 1.33–1.13 (m, 12H), 0.81 (t, J = 7.3 Hz, 9H), 0.71–0.63 (m, 6H), 0.50 (d, J = 12.9 Hz, 1H), 0.23 (d, J = 13.0 Hz, 1H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)

δ 173.6, 143.5, 138.4, 134.2, 129.6, 128.4, 127.9 (2C), 127.7, 82.0, 71.3, 64.0, 62.0, 60.3, 51.5, 29.1, 27.8, 27.5, 21.6, 13.8, 10.9.

(2S,3S)-tert-butyl 2-(4-chlorophenyl)-4-(methoxyamino)-1-tosyl-3-((tributylst-annyl)methyl)pyrrolidine-3-carboxylate (4c): HRMS (ESI M + H) m/z 785.2777. Calcd for  $C_{36}H_{58}ClN_2O_5Sn$  785.2759.

*trans*-4c: Colorless oil; the enantiomeric purity was determined by HPLC analysis (230 nm, 30 °C) t<sub>R</sub> 9.8 min (minor); t<sub>R</sub> 13.3 min (major) [CHIRALPAK IC (0.46 cm × 25 cm) (from Daicel Chemical Ind., Ltd.) hexane/*i*-PrOH, 90/10, 0.70 mL/min] as 89%eee;  $[\alpha]_D$  –15.5 (c 1.02, CHCl<sub>3</sub>); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.41 (d, *J* = 8.2 Hz, 2H), 7.17 (d, *J* = 8.1 Hz, 2H), 7.14 (d, *J* = 8.1 Hz, 2H), 6.95 (d, *J* = 8.0 Hz, 2H), 5.83 (d, *J* = 9.7 Hz, 1H), 5.05 (s, 1H), 3.85 (dd, *J* = 9.6, 6.9 Hz, 1H), 3.69 (dd, J = 9.6, 7.4 Hz, 1H), 3.50–3.44 (m, 1H), 3.42 (s, 3H), 2.38 (s, 3H), 1.47 (s, 9H), 1.37–1.15 (m, 12H), 0.82 (t, *J* = 7.2 Hz, 9H), 0.71–0.65 (m, 6H), 0.50 (d, *J* = 13.0 Hz, 1H), 0.41 (d, *J* = 13.0 Hz, 1H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  172.9, 143.3, 137.0, 136.1, 133.6, 129.7, 129.4, 128.2, 127.3, 82.8, 69.9, 67.2, 61.7, 59.4, 51.6, 29.1, 28.1, 27.5, 21.6, 13.8, 11.2.

*cis*-**4c**: <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.56 (d, J = 8.2 Hz, 2H), 7.29–7.17 (m, 6H), 5.26 (d, J = 7.8 Hz, 1H), 4.78 (s, 1H), 3.79–3.66 (m, 2H), 3.58 (dd, J = 9.8, 5.2 Hz, 1H), 3.47 (s, 3H), 2.40 (s, 3H), 1.33 (s, 9H), 1.32–1.15 (m, 12H), 0.82 (t, J = 7.3 Hz, 9H), 0.72–0.65 (m, 6H), 0.45 (d, J = 12.9 Hz, 1H), 0.22 (d, J = 12.9 Hz, 1H); and <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  173.4, 143.7, 137.1, 134.0, 133.5, 129.9, 129.6, 128.1, 127.9, 82.2, 70.6, 64.0, 62.2, 60.2, 51.5, 29.1, 27.8, 27.5, 21.6, 13.8, 10.9.

(2S,3S,4S)-tert-butyl 4-(methoxyamino)-2-(4-methoxyphenyl)-1-tosyl-3- ((tribu-tylstannyl)methyl)pyrrolidine-3-carboxylate (4d): HRMS (ESI M + H) m/z 781.3274. Calcd for  $C_{37}H_{61}N_2O_6SSn$  781.3272.

*trans*-4d: Colorless oil; the enantiomeric purity was determined by HPLC analysis (230 nm, 40 °C) t<sub>R</sub> 13.6 min (minor); t<sub>R</sub> 22.0 min (major) [CHIRALPAK IC (0.46 cm × 25 cm) (from Daicel Chemical Ind., Ltd.) hexane/*i*-PrOH, 95/5, 1.00 mL/min] as 99%eee;  $[\alpha]_D$  –43.5 (c 0.54, CHCl<sub>3</sub>); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.37 (d, J = 8.3 Hz, 2H), 7.10 (d, J = 7.9 Hz, 2H), 6.90 (d, J = 8.0 Hz, 2H), 6.72 (d, J = 8.3 Hz, 2H), 5.92 (d, J = 9.7 Hz, 1H), 5.05 (s, 1H), 3.85 (dd, J = 9.4, 7.1 Hz, 1H), 3.79 (s, 3H), 3.68 (d, J = 8.2 Hz, 1H), 3.53 (dt, J = 10.0, 7.6 Hz, 1H), 3.44 (s, 3H), 2.36 (s, 3H), 1.49 (s, 9H), 1.37–1.16 (m, 12H), 0.83 (t, J = 7.2 Hz, 9H), 0.71–0.65 (m, 6H), 0.54 (d, J = 13.1 Hz, 1H), 0.47 (d, J = 13.2 Hz, 1H); and <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  173.4, 159.1, 142.8, 136.6, 130.4, 129.6, 129.2, 127.3, 113.4, 82.6, 70.3, 67.2, 61.7, 59.5, 55.3, 51.6, 31.7, 29.2, 28.2, 27.5, 21.5, 13.8, 11.1.

*cis*-**4d**: <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.56 (d, *J* = 8.2 Hz, 2H), 7.24 (d, *J* = 10.7 Hz, 2H), 7.20–7.09 (m, 2H), 6.80 (d, *J* = 8.9 Hz, 2H), 5.32 (d, *J* = 8.3 Hz, 1H), 4.76 (s, 1H), 3.79 (s, 3H), 3.75–3.65 (m, 2H), 3.67–3.55 (m, 1H), 3.46 (s, 3H), 2.39 (s, 3H), 1.33 (s, 9H), 1.32–1.14 (m, 12H), 0.82 (t, *J* = 7.3 Hz, 9H), 0.70–0.64 (m, 6H), 0.50 (d, *J* = 13.0 Hz, 1H), 0.27 (d, *J* = 13.0 Hz, 1H); and <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  173.7, 159.1, 143.4, 134.3, 130.4, 129.5, 129.2, 127.9, 113.3, 81.9, 70.9, 63.9, 62.0, 60.3, 55.3, 29.14, 27.8, 27.5, 13.8, 10.9.

(2S,3S)-tert-butyl 4-(methoxyamino)-2-(o-tolyl)-1-tosyl-3-((tributylstannyl)methyl)pyrrolidine-3-carboxylate (4e): HRMS (ESI M + H) m/z 765.3308. Calcd for  $C_{37}H_{61}N_2O_5SSn 765.3323$ .

*trans*-4e: White solid; mp 124–125 °C; The enantiomeric purity was determined by HPLC analysis (230 nm, 40 °C) t<sub>R</sub> 8.8 min (minor); t<sub>R</sub> 11.3 min (major) [CHIRALPAK IC (0.46 cm  $\times$  25 cm) (from Daicel Chemical Ind., Ltd.) hexane/*i*-PrOH, 90/10, 1.00 mL/min]

as 95%ee;  $[\alpha]_D$  +10.1 (c 1.00, CHCl<sub>3</sub>); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.39 (d, J = 8.2 Hz, 2H), 7.17–7.06 (m, 4H), 6.94 (td, J = 7.5, 1.7 Hz, 1H), 6.71 (dd, J = 7.9, 1.2 Hz, 1H), 6.35 (d, J = 12.2 Hz, 1H), 5.43 (s, 1H), 3.94 (dd, J = 8.7, 7.6 Hz, 1H), 3.67 (t, J = 8.9 Hz, 1H), 3.56 (ddd, J = 12.2, 9.1, 7.6 Hz, 1H), 3.47 (s, 3H), 2.41 (s, 3H), 2.34 (s, 3H), 1.47 (s, 9H), 1.38–1.13 (m, 12H), 0.87 (d, J = 13.1 Hz, 0H), 0.83 (d, J = 13.1 Hz, 1H), 0.81 (t, J = 7.3 Hz, 9H), 0.70 (t, J = 8.2 Hz, 6H), 0.05 (d, J = 12.9 Hz, 1H); and <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  174.2, 142.9, 136.9, 136.5, 130.4, 129.2, 127.3, 127.1, 126.0, 82.6, 67.1, 65.5, 61.3, 59.5, 29.2, 28.08, 27.4, 21.5, 20.2, 13.8, 13.0, 11.1.

*cis*-4e: White solid; mp 95–96 °C;  $[\alpha]_D$  +40.6 (c 0.51, CHCl<sub>3</sub>); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.55 (d, J = 8.2 Hz, 2H), 7.35 (d, J = 7.3 Hz, 1H), 7.21 (d, J = 9.4 Hz, 2H), 7.16–7.06 (m, 3H), 5.32 (d, J = 10.3 Hz, 1H), 5.17 (s, 1H), 3.93 (dd, J = 10.2, 1.6 Hz, 1H), 3.87–3.80 (m, 1H), 3.62 (dd, J = 10.1, 5.4 Hz, 1H), 3.50 (s, 3H), 2.38 (s, 3H), 2.34 (s, 3H), 1.55 (s, 9H), 1.36–1.15 (m, 12H), 0.81 (t, J = 7.3 Hz, 9H), 0.75–0.70 (m, 6H), 0.54 (d, J = 13.0 Hz, 1H), 0.05 (d, J = 13.0 Hz, 1H); and <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  174.3, 143.4, 137.4, 136.1, 134.5, 130.4, 129.5, 128.2, 127.9, 127.3, 125.8, 82.2, 67.2, 64.2, 61.8, 60.8, 52.0, 29.1, 27.8, 27.4, 21.5, 20.3, 13.7, 10.7.

*trans*-4f: Colorless oil;  $[\alpha]_D$  –22.5 (c 1.03, CHCl<sub>3</sub>); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$ 7.77 (dd, J = 6.2, 3.3 Hz, 1H), 7.68–7.58 (m, 2H), 7.50–7.42 (m, 2H), 7.29 (d, J = 8.0 Hz, 2H), 7.20–7.03 (m, 2H), 6.91 (d, J = 7.9 Hz, 2H), 5.98–5.89 (m, 1H), 5.28 (s, 1H), 3.95 (dd, J = 9.3, 7.2 Hz, 1H), 3.80 (dd, J = 9.3, 7.8 Hz, 1H), 3.66 (q, J = 8.1 Hz, 1H), 3.47 (s, 3H), 2.23 (s, 3H), 1.54 (d, J = 1.3 Hz, 9H), 1.31–1.05 (m, 12H), 0.75 (d, J = 7.6 Hz, 9H), 0.66–0.58 (m, 6H), 0.55 (s, 2H); and <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  173.2, 142.9, 136.7, 135.6, 133.0, 132.9, 129.5, 129.5, 129.1, 128.1, 127.8, 127.6, 127.1, 126.2, 126.1, 82.7, 70.7, 61.9, 59.6, 51.9, 29.1, 28.2, 27.4, 21.4, 13.7, 11.1.

*cis*-**4f**: <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.82–7.77 (m, 1H), 7.72 (d, J = 8.6 Hz, 2H), 7.57 (s, 1H), 7.54 (d, J = 8.1 Hz, 2H), 7.49–7.41 (m, 3H), 7.16 (d, J = 8.0 Hz, 2H), 5.38 (d, J = 8.1 Hz, 1H), 5.04 (s, 1H), 3.85–3.75 (m, 2H), 3.72 (dd, J = 9.6, 5.2 Hz, 1H), 3.48 (s, 3H), 2.33 (s, 3H), 1.39 (s, 9H), 1.32–1.06 (m, 12H), 0.75 (t, J = 7.2 Hz, 9H), 0.67–0.58 (m, 6H), 0.56 (d, J = 13.0 Hz, 1H), 0.30 (d, J = 12.9 Hz, 1H); and <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  173.7, 143.5, 135.9, 133.1, 133.0, 129.5, 129.1, 128.1, 127.8, 127.7, 127.5, 127.5, 126.7, 126.1, 126.0, 82.2, 71.4, 64.3, 62.1, 60.6, 51.7, 29.1, 27.9, 27.4, 21.5, 13.7, 10.9.

(2R,3S)-tert-butyl 4-(methoxyamino)-2-(thiophen-2-yl)-1-tosyl-3- ((tributyls-tannyl)methyl)pyrrolidine-3-carboxylate (4g): HRMS (ESI M + H) m/z 757.2717. Calcd for  $C_{34}H_{57}N_2O_5S_2Sn$  757.2731.

*trans*-4g: Pale yellow oil; the enantiomeric purity was determined by HPLC analysis (230 nm, 30 °C) t<sub>R</sub> 11.5 min (minor); t<sub>R</sub> 13.7 min (major) [CHIRALPAK IC (0.46 cm × 25 cm) (from Daicel Chemical Ind., Ltd.) hexane/*i*-PrOH, 90/10, 0.70 mL/min] as 94%ee;  $[\alpha]_D$  –32.8 (c 1.00, CHCl<sub>3</sub>); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.32 (d, J = 8.3 Hz, 2H), 7.12 (dd, J = 5.0, 1.2 Hz, 1H), 7.07 (d, J = 7.9 Hz, 2H), 6.86 (dd, J = 5.1, 3.4 Hz, 1H), 6.82 (dd, J = 3.5, 1.2 Hz, 1H), 6.05 (d, J = 8.2 Hz, 1H), 5.44 (s, 1H), 3.80–3.57 (m, 3H), 3.46 (s, 3H), 2.34 (s, 3H), 1.56 (s, 9H), 1.42–1.16 (m, 12H), 0.83 (t, J = 7.3 Hz, 9H), 0.77 (d, J = 13.1 Hz, 1H), 0.71 (ddd, J = 9.5, 7.0, 2.3 Hz, 6H), 0.64 (d, J = 12.9 Hz, 1H); and <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  172.9, 142.7, 141.8, 136.8, 129.4, 129.1, 128.0, 127.0, 126.2, 125.8, 82.9, 67.3, 66.4, 61.8, 59.4, 50.8, 29.1, 7.2, 27.5, 21.6, 13.8, 11.1.

*cis*-**4g**: <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.53 (d, J = 8.1 Hz, 2H), 7.20 (d, J = 8.1 Hz, 2H), 7.18 (dd, J = 3.8, 2.8 Hz, 1H), 6.92–6.87 (m, 2H), 5.52 (d, J = 8.6 Hz, 1H), 5.29 (s, 1H), 3.82–3.75 (m, 1H), 3.67 (dd, J = 10.4, 2.9 Hz, 1H), 3.56 (dd, J = 10.4, 5.7 Hz, 1H), 3.47 (s, 3H), 2.38 (s, 3H), 1.38 (s, 9H), 1.37–1.17 (m, 12H), 0.83 (t, J = 7.3 Hz, 9H), 0.75–0.70 (m, 6H), 0.68 (d, J = 12.8 Hz, 1H), 0.52 (d, J = 12.7 Hz, 1H); and <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  173.5, 143.3, 142.6, 135.0, 129.4, 127.8, 127.7, 126.3, 125.8, 82.4, 66.7, 64.2, 62.1, 60.7, 51.1, 29.1, 27.9, 27.5, 21.6, 13.8, 10.9.

(2S,3S)-tert-butyl 4-(methoxyamino)-2-propyl-1-tosyl-3-((tributylstannyl)methyl)pyrrolidine-3-carboxylate (4h): Colorless oil;  $[\alpha]_D$  +15.8 (c 0.53, CHCl<sub>3</sub>); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.71 (d, J = 8.2 Hz, 2H), 7.30 (d, J = 8.0 Hz, 3H), 5.29 (d, J = 7.4 Hz, 1H), 3.80 (dd, J = 8.3, 4.6 Hz, 1H), 3.53 (d, J = 7.1 Hz, 2H), 3.44 (s, 3H), 3.38–3.30 (m, 1H), 2.41 (s, 3H), 1.92 (dtd, J = 11.4, 6.9, 6.5, 3.3 Hz, 1H), 1.76–1.62 (m, 1H), 1.50–1.24 (m, 16H), 1.24 (s, 9 H), 0.96–0.81 (m, 19H), 0.78 (d, J = 12.9 Hz, 1H); and <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  174.0, 143.4, 135.0, 129.6, 127.8, 81.7, 67.3, 64.1, 62.0, 58.7, 51.2, 34.3, 27.8, 27.5, 21.6, 20.3, 14.3, 13.8, 11.4, 8.5; HRMS (ESI M + H) m/z 717.3328. Calcd for C<sub>33</sub>H<sub>61</sub>N<sub>2</sub>O<sub>5</sub>SSn 717.3323.

#### REFERENCES

- Recent reviews, see: (a) Zimmerman, J.; Halloway, A.; Sibi, M. P. In: S. Ma (Ed.), *Handbook of Cyclization Reactions*; Wiley-VCH: Weinheim, 2010, vol. 2, pp. 1099-1148. (b) Yoshioka, E.; Kohtani, S.; Miyabe, H. *Heterocycles* 2009, 79, 229-242. (c) Rowlands, G. J. *Tetrahedron* 2010, 66, 1593-1636. (d) Ishibashi, H. *Chemical Record* 2006, 6, 23-31. (e) Majumdar, K. C.; Basuy, P. K.; Chattopadhyay, S. K. *Tetrahedron*, 2007, 63, 793-826. (f) Barrero, A. F.; Qui'lez del Moral, J. F.; Sa'nchez, E. M.; Arteaga, J. F. *Eur. J. Org. Chem.* 2006, 1627-1641. (g) Majumdar, K. C.; Basu, P. K.; Mukhopadhyay, P. P. *Tetrahedron* 2005, 61, 10603-10624. (h) (h) Majumdar, K. C.; Basu, P. K.; Mukhopadhyay, P. P. *Tetrahedron* 2004, 63, 1903-1958. (i) (i) Majumdar, K. C.; Basu, P. K.; Mukhopadhyay, P. P. *Tetrahedron* 2004, 60, 6239-6278.
- S<sub>H</sub>2 process on a sulfur atom, (a) Bencivenni, G.; Lanza, T.; Leardini, R.; Minozzi, M.; Nanni, D.; Spagnolo, P.; Zanardi, G. *Org. Lett.* **2008**, 10, 1127-1130. (b) Benati, L.; Calestani, G.; Leardini, R.; Minozzi, M.; Nanni, D.; Spagnolo, P.; Strazzari, S. *Org. Lett.* **2003**, 5, 1313-1316. (c) Benati, L.; Bencivenni, G.; Leardini, R.; Minozzi, M.; Nanni, D.; Scialpi, R.; Spagnolo, P.; Zanardi, G. *J. Org. Chem.* **2006**, 71, 3192-3197. (d) Carta, P.; Puljic, N.; Robert, C.; Dhimane, A.-L.; Fensterbank, L.; Lacote, E.; Malacria, M. *Org. Lett.* **2007**, 9, 1061-1063. (e) tin atom, (e) Hays, D. S.; Fu, G. C. *J. Am. Chem. Soc.* **1995**, 117, 7283-7284. (f) Hays, D. S.; Fu, G. C. *J. Org. Chem.* **1998**, 63, 6375-6381.
- Kamimura, A.; Ishikawa, S.; Noguchi, F.; Moriyama, T.; So, M.; Murafuji, T.; Uno, H. Chem. Commun. 2012, 6592–6594.
- Bartlett, P. A.; McLaren, K. L.; Ting, P. C. J. Am. Chem. Soc. 1988, 110, 1633-1634. (b) Naito, T.; Tajiri, K.; Harimoto, T.; Ninomiya, I.; Kiguchi, T. Tetrahedron Lett. 1994, 35, 2205-2205. (c) Kiguchi, T.; Tajiri, K.; Ninomiya, I.; Naito, T.; Hiramatsu, H. Tertahedron Lett. 1995, 36, 253-256. (d) Miyabe, H.; Torieda, M.; Inoue, K.; Tajiri, K.; Kiguchi, T.; Naito, T. J. Org. Chem. 1998, 63, 4397-4407. (e) Naito, T.; Nakagawa, K.; Nakamura, T.; Kasei, A.; Ninomiya, I.; Kiguchi, T. J. Org. Chem. 1999, 64, 2003-2009. (f) Miyabe, H.; Kanehira, S.; Kume, K.; Kandori, H.; Naito, T. Tetrahedron 1998, 54, 5883-5892. (g) Miyabe, H.; Tanaka, H.; Naito, T. Tetrahedron Lett. 1999, 40, 8387-8390. (h) Hatem, J.; Henriet-Bernard, C.; Grimaldi, J.; Maurin, R. Tetrahedron Lett. 1992, 33, 1057-1058. (i) Kiguchi, T.; Tajiri, K.; Ninomiya, I.; Naito, T. Tetrahedron 2000, 56, 5819-5833. (j) Naito, T.; Nair, J. S.; Nishiki, A.; Yamashita, K.; Kiguchi, T. Heterocycles 2000, 53, 2611-2615.

#### A. KAMIMURA ET AL.

- Kamimura, A.; Okawa, H.; Morisaki, Y.; Ishikawa, S.; Uno, H. J. Org. Chem. 2007, 72, 3569-3572; Ishikawa, S.; Noguchi, F.; Kamimura, A. J. Org. Chem. 2010, 75, 3578-3586.
- 6. CCDC 903025 for *trans*-**4e** (major **4e**) and CCDC 903026 for *cis*-**4e** (minor **4e**) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/retrieving.html