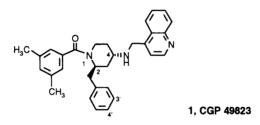


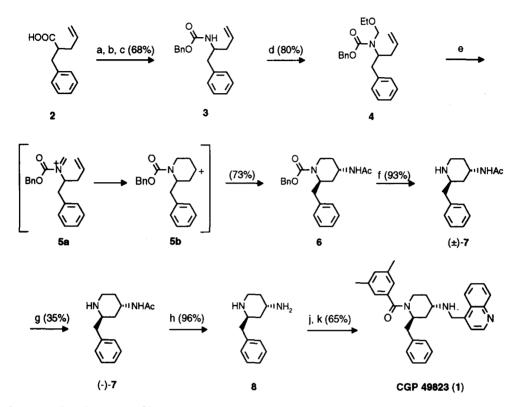
PII: S0960-894X(96)00563-X


SAR OF 2-BENZYL-4-AMINOPIPERIDINES NK1 ANTAGONISTS. PART 2¹. Synthesis of CGP 49823.

Siem J. Veenstra^{*}, Kathleen Hauser, Walter Schilling, Claudia Betschart and Silvio Ofner

Research Department, Pharmaceuticals Division, CIBA-GEIGY AG, CH-4002 Basel, Switzerland

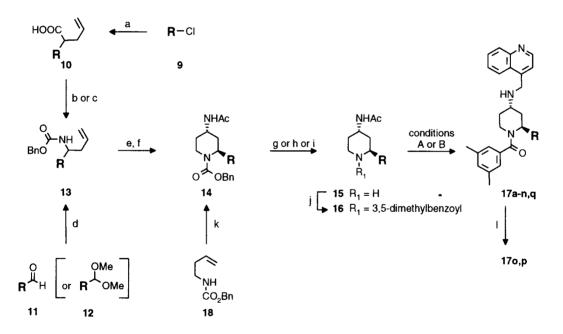
Abstract: CGP 49823 is a potent NK_1 antagonist which is centrally active after oral administration. The SAR of the C-2 substituent was investigated with respect to the affinity to the NK_1 receptor. A practical synthesis of CGP 49823, suitable for scale-up, was developed. The key-step, a tandem acyliminium ion cyclization / Ritter reaction, gave *trans* 2-benzyl-4-acetamido-piperidines with high diastereoselectivity. Copyright © 1996 Elsevier Science Ltd


NK₁ receptor antagonists² antagonize the effect of Substance P (SP)³, an eleven amino acid peptide, which is implicated in numerous disease states including asthma^{4a}, arthritis^{4b}, inflammatory bowel disease^{4c}, pain^{4d}, emesis^{4e,f} and psychiatric disorders³. CGP 49823¹ (1) is a potent NK₁ antagonist, which is centrally active after oral administration. The structure-activity relationship (SAR) of 1 has thus far revealed certain prerequisites for high affinity to the NK₁ receptor: the (2*R*,4*S*)-stereochemistry, the carbonyl group of the benzamide and its 3,5substitution with small lipophilic groups.

The SAR of the 2-benzyl substituent has, until now, remained unexplored. Two synthetic routes, which we developed for this class of compounds^{1,5}, were lengthy and not sufficiently versatile for a broad exploration of the SAR at C-2. An alternative synthesis for 2-substituted-4-aminopiperidines should preferably be compatible with a variety of functionalities, be *trans*- and enantioselective, and be suitable for scale-up. Herein we wish to report on a selective synthesis for 1 (Scheme 1) and the SAR of the C-2 substitutent of 4-amino-piperidines as a novel class of highly potent and selective NK₁ receptor antagonists.

The readily accessible acid 2^6 was converted to its primary carboxamide. Hofmann reaction⁶ and coupling with benzyloxycarbonyl chloride gave the urethane 3. Alkylation with chloromethyl ethyl ether under phase-transfer conditions gave the acyl-iminium precursor 4. In the presence of two equivalents of chlorosulfonic acid⁷ in acetonitrile as a solvent at -20°C, 4 cyclized smoothly and after aqueous work-up and crystallization of the crude product the pure *trans*-4-acetamido-piperidine 6^8 was isolated in 73% yield (*trans/cis* ratio 20 : 1). Deprotection and classical resolution⁹ of (±)-7 with (-)-O,O'-dibenzoyl tartaric acid gave (2*R*,4*S*)-7 (> 98%ee¹⁰; $[\alpha]_D$ -30.2°, c=1, CH₂Cl₂).

^{*)} Fax: +41 61 696 33 35; e-mail: siem.veenstra@chbs.mhs.ciba.com


Scheme 1

Reagents and conditions: (a) i: SOCl₂; ii: aq. NH₃; (b) Br₂, NaOH; (c) CICO₂Bn, aq. NaHCO₃; (d) CICH₂OEt, 50% aq. NaOH, CH₂Cl₂, cat. benzyltributylammonium chloride, 5-10°C; (e) CISO₃H, CH₃CN, -20°C, 30 min.; (f) 6N HCl, 50°C; (g) fractional crystallization with (-)-O,O'-dibenzoyl tartaric acid; (h) 6N HCl, 115°C; (j) i: PhCHO, toluene; ii: 3,5-dimethylbenzoyl chloride, Et₃N, toluene; ii: 1N HCl; (k) i: quinoline-4-carboxaldehyde, toluene; ii: NaBH₄, MeOH.

After hydrolysis the diamine 8 was selectively acylated with 3,5-dimethyl-benzoyl chloride at the secondary nitrogen atom using the Schiff's base of benzaldehyde for transient protection of the primary amine¹¹. A two-step reductive amination with quinoline-4-carboxaldehyde completed the synthesis of 1 in 8% overall yield from 2 without chromatographic separation.

The intramolecular cyclization of an acyliminium ion onto an unactivated olefin has been established as a mild and versatile method for the construction of nitrogen containing 5- or 6-membered heterocycles¹². The use of acetonitrile as a solvent for this reaction, although little known¹³, represents a useful variation. Concurrently, in a Ritter type process, a second nitrogen atom in the form of an acetamide is introduced in the 4-position of the piperidine ring. The key-step for the construction of the *trans*-2-substituted-4-aminopiperidine skeleton was the transformation $4 \rightarrow 6$ (Scheme 1). The acyl-iminium ion $5a^{12}$, which is presumably generated upon acid treatment of 4, cyclizes to 5b and the resulting carbenium ion is trapped by the solvent acetonitrile. Aqueous work-up gives the 4-acetamido-piperidine as the product. *Trans* selectivity for this process was to be expected, as N-acylated-2-alkylpiperidines have a strong preference for an axial conformation¹⁴. Presumably some of this preference is maintained in the cation 5b. For steric reasons, the cation is trapped from the opposite site of the ring leading to the *trans* product 6. For the purpose of studying the SAR of the C-2 substituent we prepared the derivatives 17 (of 1) in racemic form (Scheme 2). The benzyloxycarbonyl protected homoallyl amines 13 served as key intermediates. Compounds 13 were usually prepared via known routes^{6,15} from the appropriately substituted benzylchlorides 9 via the substituted 4-pentenoic acids 10. Alternatively, 13 was obtained in a single step from aldehydes 11 (entries 2 and 3) or from acetals 12 (entries 9, 10 and 15) via a novel, highly versatile, one-pot condensation reaction. When an equimolar mixture of an aldehyde 11 (or an acetal 12), benzylcarbamate and allyltrimethyl-silane in acetonitrile was treated at 0-25°C with one equivalent of borontrifluoride diethyletherate, the respective benzyloxycarbonyl protected homoallylamines 13 were produced in good to excellent yields¹⁶. Alkylation of the urethanes 13 with chloromethyl ethyl ether under phase-transfer conditions followed by cyclization with trifluoromethane sulphonic acid in acetonitrile at -20°C gave the *trans* substituted piperidines 14. Cleavage of the carbamate and acylation with 3,5-dimethylbenzoyl chloride led to benzamide 16. Selective cleavage of the acetamide versus the benzamide was usually accomplished in acceptable yields by careful hydrolysis with 6N HCl at 90°C (Conditions A: i)¹⁷.

Scheme 2

Reagents and conditions: (a) i: allylmalonic acid diethyl ester, NaOMe, MeOH; ii: NaOH, H₂O; iii: H₂SO₄, H₂O; iv: 160°C; (b) i: SOCl₂; ii: aq. NH₃; iii: Br₂, NaOH; iv: CICO₂Bn, aq. NaHCO₃; (c) (PhO)₂P(O)N₃, Et₃N, benzyl alcohol, toluene, 50-110°C; (d) BnOCONH₂, allyltrimethylsilane, BF₃·OEt₂, acetonitrile, 0-25°C; (e) CICH₂OEt, 50% aq. NaOH, CH₂Cl₂, cat. benzyltributylammonium chloride; (f) CF₃SO₃H, acetonitrile, -20°C, 30 min; (g) 10N HCl, 50°C; (h) 10% Pd-C, H₂, MeOH, 1N HCl; (i) TMSCl, NaI, acetonitrile; (j) 3,5-dimethylbenzoyl chloride, CH₂Cl₂, aq. NaHCO₃; (k) PhCHO, SnCl₄, Ac₂O, acetonitrile, -20°C; (l) LiOH.

Conditions A: i: 6N HCl, 90°C; ii: quinoline-4-carbaldehyde, toluene, azeotropic removal of water; iii: NaBH4, MeOH.

Conditions B: i: (Boc)₂O, DMAP, Et₃N, toluene, 60°C; ii: MeOLi, MeOH; iii: TFA; iv: quinoline-4-carbaldehyde, toluene, azeotropic removal of water; v: NaBH₄, MeOH.

Entry	Starting material	Conditions	R	Compound	IC ₅₀ [nM] ¹⁸
1	С)-сн ₂ сі	Scheme 1	benzyl	(+)-1 ^{a)}	12
2	Ссно	d,e,f,i / A	cyclohexyl-methyl	17a	310
3	Слосно	d,e,f,h / A	phenethyl	17b	190
4		a,c,e,f,h / A	1-naphtyl-methyl	17c	29
5	CTC CH2CI	a,c,e,f,i / A	2-naphtyl-methyl	17d	14
6	сі-	a,c,e,f,h / A	4-chloro-benzyl	17e	13
7		a,c,e,f,h / A	3,4-dichloro-benzyl	17f	9
8	CI CH2CI	a,c,e,f,h / A	2,4-dichloro-benzyl	17g	600
9	OMe OMe b)	d,e,f,h / B	4-iodo-benzyl	17h	7
10	Br OMe b)	d,e,f,h / A	3,5-dibromo-benzyl	17i	52
11	02N- CH2CI	a,c,e,f,h / B	4-nitro-benzyl	17j	3
12	F3C-CH2CI	a,c,e,f,i / A	4-trifluoromethyl-benzyl	17k	11
13	MeO CH ₂ CI	a,c,e,f,i / A	3-methoxy-benzyl	171	27
14	MeO - CH2CI	a,c,e,f,h / A	4-methoxy-benzyl	17m	14
15	NC OMe o OMe b)	d,e,f,j / B	4-cyano-benzyl	17n	21
16	17n	I	4-carbamoyl-benzyl	170	100
17	17n	I	4-carboxy-benzyl	17p	>10000
18	С-сно + 18	g,h / A	phenyl	17q	2670

Table

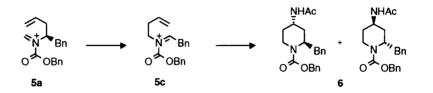
a) CGP 49823 b) prepared in analogy to a published procedure¹⁹

A better selectivity in the cleavage of the acetamide 16 was obtained via an alternative three step procedure (Conditions B: i-iii; entries 9, 11 and 15): Boc-protection of the secondary acetamide 16, followed by successive treatment with a catalytic amount of LiOMe in MeOH to cleave the acetyl group under mild conditions and, finally, cleavage of the Boc-amide with trifluoroacetic acid. The precursor 14q for compound 17q (entry 18) was obtained in a single step by treatment of 18^{20} and benzaldehyde in the presence of equimolar amounts of SnCl4 and acetic anhydride in acetonitrile at $-20^{\circ}C^{21}$. A two-step reductive amination with quinoline-4-carboxaldehyde completed the synthesis for compounds 17a-n,q (Conditions A: ii and iii). Partial saponification with LiOH in aqueous MeOH of the derivative 17n gave the carbamoyl and carboxy derivatives 17o and 17p respectively.

The NK₁ binding results of compounds **17a-q** are summarized in the Table. IC₅₀ values were determined by displacement of ³H-SP from bovine retina membranes¹⁸. The linker between the phenyl ring and the piperidine ring is important and should be one methylene group. Direct attachment of the phenyl group onto the piperidine ring gives an almost inactive compound (entry 18). Chain elongation weakens the binding potency considerably (entry 3). The aromaticity of the benzyl group is also important for good NK₁ affinity (entry 2). Various hydrophobic substitutions (benzo-annelation, Cl, I, NO₂, CF₃, OMe, and CN; entries 4-7, 9 and 11-15) can be made at the 3'- and/or 4'-position(s), while the compounds maintain excellent potency. Ortho-substitution with a chlorine atom presumably does not allow the side chain to adapt the optimal conformation for potent binding (entry 8). The presence of a hydrophilic carbamoyl group (entry 16) weakens the activity considerably and the presence of a carboxylic acid (entry 17) is deleterious for NK₁ binding.

In conclusion, the SAR of the benzyl side chain of CGP 49823, a highly potent, selective and orally active NK_1 antagonist, for affinities at the NK_1 receptor showed a high tolerability for hydrophobic substituents at the 3'- and/or 4'-position(s). A short and selective synthesis for CGP 49823, suitable for scale-up, has been developed.

Acknowledgments. The authors wish to express their thanks to U. Bützberger, A. Koblet, C. Riegert, M. Roggwiller, B. Schaub and P. Schmid for their skillful technical assistance, and our colleagues from the Analytical Department for providing spectral and analytical data.


We further wish to thank Dr. H. Hiemstra, University of Amsterdam, for his suggestion to use acetonitrile as a solvent for the acyl-iminium ion cyclisation.

References and notes :

- (1) Part 1: Ofner, S.; Hauser, K.; Schilling, W.; Vassout, A.; Veenstra, S.J. Bioorg. Med. Chem. Lett. 1996, 6, 1623.
- (2) For recent reviews of tachykinin receptors and tachykinin receptor antagonists, see (a) Regoli, D.; Boudon, A. Fauchère, J.-L. *Pharmacol. Rev.* 1994, 46, 551. (b) McLean, S. *Med. Res. Rev.* 1996, 16, 297.
- (3) Otsuka, M.; Yoshioka, K. Physiol. Rev. 1993, 73, 228.
- (4) (a) Barnes, P.; Belvisi, M.; Rogers, D. Trends Pharmacol. Sci. 1993, 11, 185. (b) Lotz, M.; Carson, D.A.; Vaughan, J.H. Science 1987, 235, 893. (c) Maggi, C. A.; Patacchini, R.; Rovero, P.; Giachetti, A. J. Auton. Pharmacol. 1993, 13, 23. (d) Laird, J. M. A.; Hargreaves, R. J.; Hill, R. G. Brit. J. Pharmacol. 1993, 109, 259. (e) Tattersall, F.D.; Rycroft, W.; Hargreaves, R.J.; Hill, R.G. Eur. J. Pharmacol. 1993, 250, R5.R6. (f) Davison, J.S.; Oland, L.; Boissonade, F. Gastroenterology 1995, 108 (4 Suppl.), A589.
- (5) Schilling, W.; Ofner, S.; Veenstra, S. J. Europ. Pat. EP 532456, (1990).
- (6) McCarty, F.J.; Rosenstock, P.D.; Paolini, J.P.; Micucci, D.D.; Ashton, L.; Bennetts, W.W.; Palopoli, F.P. J. Med. Chem. 1968, 11, 534.
- (7) CF₃SO₃H/CH₃CN gave identical results; SnCl₄/Ac₂O/CH₃CN gave good yields, but a lower *trans/cis* ratio; other acids gave unsatisfactory results.
- (8) The *trans*-stereochemistry of 6 was confirmed after cleavage of the benzyloxycarbonyl group:
 (±)-7: resin, ¹H-NMR (400 MHz, CD₃CN) 7.33 7.27 (m, 2H), 7.24 7.18 (m, 3H), 6.45 6.31 (br, NH), 4.08 4.02 (m, 1H), 3.00 2.92 (m, 1H), 2.79 (dt, J=4.1 and 12.5 Hz, 1H), 2.71 (ddd, J=3.0, 11.5 and 12.2 Hz, 1H), 2.64 (dd, J=5.6 and 13.6 Hz, 1H), 2.57 (dd, J=7.8 and 13.6 Hz, 1H), 1.84 (s, 3H), 1.63 1.56 (m, 2H), 1.53 1.46 (m, 1H), 1.38 (ddd, J=4.0, 10.0 and 14.4 Hz, 1H).

Cis-isomer of 7: m.p. 133° C, ¹H-NMR (400 MHz, CD₃CN) 7.32 - 7.26 (m, 2H), 7.23 - 7.18 (m, 3H), 6.26 - 6.15 (br, 1H), 3.60 (ttd, J=3.8, 11.6 and 7.7 Hz, 1H), 2.96 (ddd, J= 2.5, 4.2 and 12.0 Hz, 1H), 2.76 - 2.68 (m, 1H), 2.66 - 2.58 (m, 2H), 2.52 (dt, J=2.5 and 12.0 Hz, 1H), 1.80 - 1.69 (m, 2H), 1.43 - 1.28 (br, 1H), 1.17 (dt, J=4.2 and 12.0 Hz, 1H), 0.90 (q, J=11.6 Hz, 1H).

(9) In order to avoid this resolution step late in the synthesis, we studied the key-step $4 \rightarrow 6$ starting with optically pure (S)-4 ($[\alpha]_D$ +23.5°, c=1, CH₂Cl₂) obtained from racemic 4 via a classical resolution with (-)-O,O'-dibenzoyl tartaric acid. Unfortunately, the product 6 from this reaction (CF₃SO₃H, acetonitrile, -20°C) had racemised considerably and showed only 42% ee¹⁰. A concomitantly occurring 2-aza-Cope rearrangement 5a \rightarrow 5c, which then cyclizes to racemic 6, would explain this result:

See for instance: (a) Ref. 11; (b) Guiles, J.W.; Meyers, A.I. J. Org. Chem. 1991, 56, 6873; (c) Hart, D.J.; Tsai, Y-M. Tetrahedron Lett. 1981, 22, 1567.

- (10) Ee of 7 was determined via HPLC analysis (chiralcel-OD®) of its benzyloxycarbonyl derivative 6.
- (11) To our best knowledge this procedure is the first example of a selective acylation of a secondary amine in presence of a primary amine using an *acid chloride* as acylating agent. Selective Boc-protection of a secondary amine in presence of a primary amine has been reported: Prugh, J.D.; Birchenough, L.A.; Egbertson, M.S. Synth. Commun. 1992, 22, 2357.
- (12) Hiemstra, H.; Speckamp, W. N. In *Comprehensive Organic Synthesis*, Vol. 2, pp. 1047-1082, Schreiber, S.L., Ed.; Pergamon Press; Oxford, 1991.
- (13) (a) Esch, P.M.; Boska, I.M.; Hiemstra, H.; de Boer, R.F. and Speckamp, W.N. Tetrahedron 1991, 47, 4039. (b) Perron, F.; Albizati, K.F. J. Org. Chem. 1987, 52, 4128.
- (14) (a) Paulsen, H.; Todt, K.; Ripperger, H. Chem. Ber. 1968, 101, 3365. (b) Chow, Y.L.; Colon, C.J.; Tam, J.N.S. Can. J. Chem. 1968, 46, 2821.
- (15) Shioiri, T.; Ninomiya, K.; Yamada, S. J. Am. Chem. Soc. 1972, 94, 6203.
- (16) Veenstra, S.J.; Schmid, P. Tetrahedron Lett. Manuscript in preparation.
- (17) A side reaction was the simultaneous cleavage of the benzamide.
- (18) For experimental details see: Bittiger, H. and Heid, J. "The retina, a part of the central nervous system with a very high density of ³H-Substance P binding sites", in *Substance P Dublin 1983, Proc. Int. Symp.* (1983), pp. 198-199, Skrabanek, P.; Powell, D., Eds.; Boole Press Ltd.; Dublin, 1983.
- (19) Hey, D.H.; Williams, J.M. J. Chem. Soc. 1950, 1682.
- (20) Earle, M.J.; Fairhurst, R,A.; Heaney, H.; Papageorgiou, G. Synlett. 1990, 10, 621.
- (21) Veenstra, S.J. unpublished results.

(Received in Belgium 16 September 1996; accepted 18 November 1996)