

Bioorganic & Medicinal Chemistry Letters 11 (2001) 331-333

The Development of a Potential Single Photon Emission Computed Tomography (SPECT) Imaging Agent for the Corticotropin-Releasing Hormone Receptor Type 1

Xinrong Tian,^{a,†} Ling-Wei Hsin,^{a,‡} Elizabeth L. Webster,^{b,§} Carlo Contoreggi,^c George P. Chrousos,^d Philip W. Gold,^b Kamal Habib,^b Alejandro Ayala,^b William C. Eckelman,^e Arthur E. Jacobson^a and Kenner C. Rice^{a,*}

^aLaboratory of Medicinal Chemistry, NIDDK, NIH, Bethesda, MD 20892, USA
^bClinical Neuroendocrinology Branch, NIMH, Clinical Center, NIH, Bethesda, MD 20892, USA
^cBrain Imaging Unit, NIDA, Baltimore, MD 21224, USA
^dPediatric Endocrinology Section, PREB, NICHD, Clinical Center, NIH, Bethesda, MD 20892, USA
^ePET Department, Clinical Center, NIH, Bethesda, MD 20892, USA

Received 17 August 2000; accepted 14 November 2000

Abstract—A high-affinity radioligand for CRHR₁ has been prepared that can serve as a template for the development of SPECT imaging agents. The 5-chloro-*N*-cyclopropylmethyl-*N*-(2,6-dichloro-4-iodophenyl)-2-methyl-*N*-propylpyrimidine-4,6-diamine (**6b**, $K_i = 14$ nM), and the corresponding 4-bromophenyl analogue (**6a**, $K_i = 21$ nM), were synthesized in four steps from compound **3**. Published by Elsevier Science Ltd.

Corticotropin-releasing hormone (CRH) is a 41 aminoacid peptide secreted in response to stress by several brain nuclei involved in emotions, memory, endocrine and autonomic regulation. Overstimulation of CRH type-1 receptor (CRHR₁) may be the underlying factor in the pathogenesis of a variety of mental disorders that include major depression, anxiety and substance withdrawal.¹⁻⁴ Nonpeptide CRHR₁ antagonists are therefore being developed for their potential of treating these conditions. Moreover, the advent of a specific radioligand to label CRHR₁ in vivo would be an invaluable diagnostic and prognostic tool for several illnesses. We have previously shown that antalarmin⁵ (*N*-butyl-*N*ethyl[2,5,6-trimethyl-7-(2,4,6-trimethylphenyl)pyrrolo-[2,3-*d*]pyrimidin-4-yl]-amine, **1**), initially patented by Pfizer,⁶ is a selective high affinity CRHR₁ antagonist that exerts anti-anxiety effects in rodents and nonhuman primates. We have also reported the synthesis of potential PET imaging agents for CRHR₁.⁷ Here we report the synthesis and binding affinity of a potential candidate for single photon emission computed tomography (SPECT). SPECT, like positron emission tomography (PET), is used for in vivo measurement of hormone receptors, and has proven to be a non-invasive technique with wide applicability, particularly in neuroscience (Fig. 1).^{8–11}

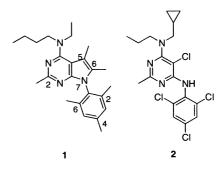


Figure 1.

^{*}Corresponding author. Tel.: +1-301-496-1856; fax: +1-301-402-0589; e-mail: kr21f@nih.gov

[†]Current Address: Procter & Gamble Pharmaceuticals, HCRC, Mason, OH 45040, USA.

[‡]Current Address: University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Department of Pharmacology, Piscataway, NJ 08854, USA.

⁸Current Address: University of North Carolina, Department of Psychiatry, Chapel Hill, NC 27599, USA.

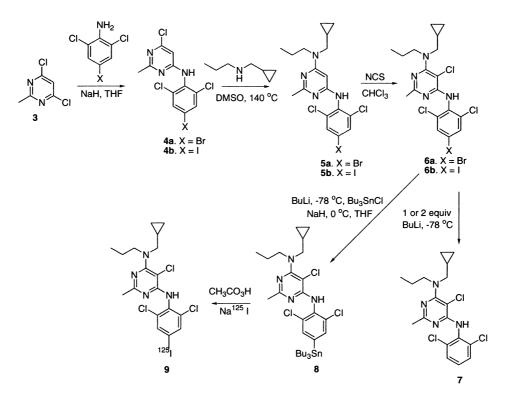
⁰⁹⁶⁰⁻⁸⁹⁴X/01/\$ - see front matter. Published by Elsevier Science Ltd. PII: S0960-894X(00)00661-2

We based our synthesis of a potential SPECT ligand on a nonpeptide compound (5-chloro-*N*-cyclopropylmethyl-2-methyl-*N*-(2,4,6-trichlorophenyl)-pyrimidine-4,6-diamine, **2**) known to be a high affinity ligand for CRHR₁, and known to have CRH antagonist activity as shown by a functional assay (inhibition of stimulated cAMP).¹² Our initial work towards the goal of obtaining a template for a CRHR₁ SPECT ligand was based on the synthesis and the determination of the CRHR₁ binding affinity of compounds **6a** and **6b** in which a bromine or iodine atom replaced the chlorine atom in the C4 position of the substituted phenyl ring of **2**. If the iodo compound was found to have reasonable affinity for the receptor, the further synthesis of a ¹²⁵I compound based on **6b** would be attempted.

The synthesis was carried out using a route analogous to one reported by Chen.¹² In addition to **2**, bromo (**6a**) and iodo (**6b**) analogues were prepared in four steps from 4,4-dichloro-2-methyl pyrimidine (**3**), in overall yields of 62 and 47%, respectively (Scheme 1). Coupling of **3** with 4-bromo and 4-iodo-2,6-dichloroaniline gave the pyrimidines **4a** and **4b**. Amination with *N*-cyclopropylmethyl-

Table 1. CRH₁ binding affinity

31 ± 9.7^{a} 21 ± 7.9^{a} 14 ± 4.6^{a} 3.0^{b}


^aThree binding curves conducted in duplicate were generated for each compound and the K_i values represent the mean of the three experiments±SEM.

^bThe result of a single experiment.

propylamine in DMSO at 140 °C gave **5a,b**, followed by chlorination, which afforded the desired 4-halo derivatives (*N*-(4-bromo-2,6-dichlorophenyl)-5-chloro-*N*-cyclopropylmethyl-2-methyl-*N*-propylpyrimidine-4,6-diamine (**6a**) and 5-chloro-*N*-cyclopropylmethyl-*N*-(2,6-dichloro-4-iodophenyl)-2-methyl-*N*-propylpyrimidine-4,6-diamine (**6b**).

The CRH₁ affinity of **2**, **6a**, **6b**, and the tributyltin analogue **8** was determined using a previously reported procedure.⁷ The binding affinity of these compounds in rat cerebellum against radioligand [^{125}I]Tyr⁰-sauvagine is shown in Table 1. Iodo analogue **6b** exhibited higher affinity than the formerly known¹² chloro analogue **2**. The affinity decreased in the order of I>Br>Cl. This corresponds with the decrease in lipophilicity (I>Br>Cl). The effect of lipophilicity on CRHR₁ affinity was further demonstrated with compound **8**. This tributyltin analogue, the most lipophilic among the four synthesized compounds, showed the highest binding affinity.

With the establishment of the high affinity of **6b** for CRHR₁, we decided to proceed with the synthesis of the radiolabeled ¹²⁵I analogue. We envisioned that it could be derived from the corresponding tributyltin compound **8**, which, in turn, should be accessible from the bromo precursor **6a**. As outlined in Scheme 1, conversion of the bromide **6a** to the tributyltin compound **8** was not without problems. Initial treatment of **6a** with 2 equiv of *n*-BuLi followed by tributyltin chloride only gave the debromination product **7**. This was probably due to the bromo-lithium exchange occurring prior to the deprotonation of the secondary amine; the generated aromatic anion was immediately quenched by

an acidic anilino proton. The preferred formation of an aromatic anion was confirmed by the use of 1 equiv of *n*-BuLi which also gave the reduction product 7. We circumvented this problem by a stepwise deprotonation and lithiation sequence. Compound **6a** was first treated with 1 equiv of sodium hydride to deprotonate the aniline followed by 1 equiv of *n*-BuLi for bromo-lithium exchange. The resulting dianionic species was quenched with tributyltin chloride to afford the desired tin compound **8**¹³ in 51% yield.

Compound 8 was converted to the targeted ¹²⁵I compound 9 using the following procedure. To a solution of carrier-free [¹²⁵I]NaI (5.34 mCi, Amersham-Pharmacia Biotech, Chicago, IL 60611) were added tributyltin precursor (150 μ L, 0.33 mg/mL) in ethanol, H₃PO₄ (40 μ L, 0.5 M), and peracetic acid (50 µL, 0.2 M). After standing at room temperature for 30 min, sodium bisulfite was added to quench the reaction, and 1 mL of saturated sodium bicarbonate solution was added to the mixture. The [¹²⁵I] product was extracted with EtOAc (3 \times 1 mL) and then passed through a short anhydrous Na₂SO₄ column. The filtrate was evaporated to dryness under a stream of nitrogen. The residue was dissolved in 50 μ L of MeOH and 100 μ L of mobile phase (MeOH/ H_2O /triethylamine, 90:10:0.3), and purified by HPLC on a reverse phase column (C-18 Applied Biosystems Spheri-5 ODS 5 μ , 4.6×250 mm column). The corresponding fraction was collected and evaporated to dryness under a stream of nitrogen to afford pure [125I] product 9 (4.96 mCi) with a radiochemical purity >99%. Since 8 is eluted after 9 using reversed phase HPLC, and proton-destannylation has not been observed under these conditions, we expect the effective specific activity of 9 to be 2200 Ci/mmol.

In summary, we have developed the synthesis of the first nonpeptide potential SPECT ligand for CRHR₁. The significant binding affinity exhibited by iodo analogue **6b** makes its ¹²⁵I analogue **9** an intriguing template for further development of the SPECT imaging agent for the CRHR₁. It also holds great potential as a selective nonpeptide radioligand for the CRHR₁ binding assay, replacing the currently used peptide radioligands. A study along these lines is in progress and the results will be reported in due course.

Acknowledgements

The authors thank Noel Whittaker and Wesley White of the Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, for the mass spectral data.

References and Notes

1. Bremner, J. D.; Licinio, J.; Darnell, A.; Krystal, J. H.; Owens, M. J.; Southwick, S. M.; Nemeroff, C. B.; Charney, D. S. *Am. J. Psych.* **1997**, *154*, 624.

2. Nemeroff, C. B.; Widerlov, E.; Bissette, G.; Walleus, H.; Karlsson, I.; Eklund, K.; Kilts, C. D.; Loosen, P. T.; Vale, W. *Science* **1984**, *226*, 1342.

 Zhou, Y.; Spangler, R.; LaForge, K. S.; Maggos, C. E.; Ho, A.; Kreek, M. J. *J. Pharmacol. Exp. Ther.* **1996**, *279*, 351.
Iredale, P. A.; Alvaro, J. D.; Lee, Y.; Terwilliger, R.; Chen, Y. L.; Duman, R. S. *J. Neurochem.* **2000**, *74*, 199.

5. Webster, E. L.; Lewis, D. B.; Torpy, D. J.; Zackman, E. K.; Rice, K. C.; Chrousos, G. P. *Endocrinology* **1996**, *137*, 5747.

 Chen, Y. L. Pyrrolopyrimidines as CRF Antagonists. International Publication Number WO 94/13676, June 23, 1994.
Hsin, L.-W.; Webster, E. L.; Chrousos, G. P.; Gold, P. W.; Eckelman, W. C.; Contoreggi, C.; Rice, K. C. *Bioorg. Med.*

Chem. Lett. **2000**, *10*, 707. 8. Diksic, M.; Reba, R. C. *Radiopharmaceuticals and Brain*

Pathology Studies with PET and SPECT; CRC: Boca Raton, 1991.

9. Frost, J. J.; Wagner, H. N. *Quantitative Imaging. Neuror*eceptors, *Neurotransmitters and Enzymes*; Raven: New York, 1990.

10. Andreasen, N. C. Science 1988, 239, 1381.

11. de Costa, B. R.; Iadarola, M. J.; Rothman, R. B.; Berman, K. F.; George, C.; Newman, A. H.; Mahboubi, A.; Jacobson,

A. E.; Rice, K. C. J. Med. Chem. **1992**, 35, 2826.

12. Chen, C.; Dagnino, J. R.; De Souza, E. B.; Grigoriadis, D. E.; Huang, C. Q.; Kim, K.-I.; Liu, Z.; Moran, T.; Webb, T. R.; Whitten, J. P.; Xie, Y. F.; McCarthy, J. R. *J. Med. Chem.* **1996**, *39*, 4358.

13. The procedure used for the preparation of the tributyltin analogue 8 from bromide 6a is as follows: To a solution of the bromide 6a (311 mg, 0.65 mmol) in THF (2 mL) was added sodium hydride (16 mg, 60% in mineral oil) at 0°C. After being stirred at 0 °C for 15 min, the reaction mixture was cooled to -78 °C and *n*-BuLi (1.6 M in hexane, 0.25 mL) was added. The mixture was stirred for 20 min and treated with tributyltin chloride (288 mg, 0.88 mmol). It was then slowly warmed to room temperature with stirring over 2 h, quenched with aqueous NH₄Cl solution and extracted with EtOAc. The extract was dried over Na₂SO₄ and concentrated. The residue was chromatographed (silica gel, hexanes/EtOAc, 20:1 to 7:1) to give the tributyltin derivative 8 (230 mg, 51% yield) as a clear oil; ¹H NMR (300 MHz, CDCl₃) 7.39 (s, 2H), 6.71 (s, 1H), 3.58 (t, 2H, J = 7.8 Hz), 3.42 (d, 2H, J = 6.9 Hz), 2.26 (s, 3H), 1.53 (m, 6H), 1.06-1.20 (m, 6H), 0.90 (m, 12H), 0.51 (m, 2H), 0.24 (q, J = 4.8 Hz); MS (CI +) m/z 689; HRMS calcd for C₃₀H₄₇N₄Cl₃Sn 688.1888, found 688.1892.