2264

J. Chem. Soc. (C), 1971

Reversible Isomerisation of Alkyl Aromatics

By A. M. Osman, M. Z. A. Badr,* and A. E. Abdel-Rahman, Chemistry Department, Faculty of Science, Assiut University, Assiut, Egypt, U.A.R.

The isomerisation of α - and β -benzyl- and substituted-benzyl-naphthalenes catalysed by anhydrous aluminium chloride or toluene-p-sulphonic acid has been studied.

Halogen-substituted-benzylnaphthalenes failed to isomerise whilst p-methyl- and p-methoxy-benzylnaphthalenes, isomerise more readily than benzylnaphthalene. The isomerisation is reversible, and aluminium chloride is more effective than toluene-p-sulphonic acid.

THE mechanism of the Friedel-Crafts alkylation of aromatic compounds came to be considered, recently, as a typical electrophilic aromatic substitution.¹

Several alkylations were reported, however, in which the proportion of meta-substituted product, was anomalously high for an electrophilic reaction,² and this was explained,³ by postulating a high degree of reactivity to the attacking alkyl group, a condition which is accompanied by low selectivity.

Recently, a hypothesis was advanced,⁴ which relates the higher proportion of meta-isomers, to the relatively high stability of the intermediate ion.

Since the intermediate σ -complex postulated for alkylation is identical to that postulated for isomerisation,⁵ it is questionable whether alkylation exclusive of isomerisation would be possible. Consequently, an isomer distribution obtained by alkylation can change due to positional isomerisation under the Friedel-Crafts reaction conditions.

The early literature on the alkylation of naphthalene is often contradictory and misleading. Pure α - or β -isomers, or more often mixtures, are reported as products of alkylation with alcohols and aluminium chloride, boron trifluoride, or phosphorus pentoxide as condensing agents.⁶

In order to study the possibility that reversible isomerisation of the isomers may be responsible, the behaviour of some $\alpha\text{-}$ and $\beta\text{-substituted-benzylnaphthalenes}$ has been studied with toluene-p-sulphonic acid as catalyst: the results are compared with those using aluminium chloride.

The α - and β -isomers were each isomerised when heated with catalysts to give mixtures containing both monoalkyl isomers. Aluminium chloride was a better catalyst than the sulphonic acid which required a higher temperature to be effective.

It was noted that the isomerisation was less ready when the basicity of the alkyl substitution was reduced, as in bromo- and chloro-benzylnaphthalenes. a- and β-p-Bromobenzylnaphthalene and the corresponding

49, 3142; B. W. Malishiv, 101a., 1930, 57, 883; N. M. Cullmane and D. M. Leyson, J. Chem. Soc., 1954, 2942.
² C. C. Price, 'Organic Reactions,' John Wiley, New York, N.Y., 1949, vol. III; C. C. Price, Chem. Rev., 1941, 29, 37; F. E. Condon, J. Amer. Chem. Soc., 1949, 71, 3544.
^a H. C. Brown and C. R. Smoot, J. Amer. Chem. Soc., 1956, 78, 6246; H. C. Brown and C. R. Smoot, Jbid., 1956, 78, 6256; H. C. Brown and K. L. Nelson, *ibid.*, 1953, 75, 6292; H. C. Brown and C. P. Smoot. and C. W. McCary, ibid., 1955, 77, 2300.

p-chloro-compounds were unaffected by toluene-psulphonic acid at 130°, or by aluminium chloride in boiling carbon disulphide; this agrees with a similar observation for the p-nitro-compound.⁶

Results for the isomerisation of substituted naphthalenes are given in Tables 1 and 2.

TABLE 1

Isomerisation products of 1-benzylnaphthalenes

	1-Benzyl ª		1-p-Methyl- benzyl ª		1-p-Methoxy- benzyl ^b	
Catalyst	1	2	1	2	1	2
Toluene-p-sulphonic acid at 125-130°	57	43	45	55	45	55
$AlCl_3-CS_2$ -reflux	12	88	37	63	9	91

TABLE 2

Isomerisation products of 2-benzylnaphthalenes

	0 D		2-p-Methyl-		2-p-Methoxy-	
	2-Benzyl ª		benzyl «		benzyl ø	
Catalyst	1	2	1	2	1	2
Toluene-p-sulphonic acid at 125—130°	11	89	15	85	34	66
AlCl ₃ CS ₂ reflux	20	80			8	92
^a G.l.c., column,	10%		hylene	glyco	adip	ate on

Chromosorb W (35-80 mesh) at 210°. ^b G.l.c., column, 20% SE 30 on Chromosorb W.A.W. (35-80 mesh) at 250°.

From Table 1 it is evident that α -isomers of monoalkyl naphthalenes have isomerised mainly to the β -isomers with aluminium chloride as a catalyst, whilst toluene-psulphonic acid gives no more than 55% of the β -isomers. In contrast isomerisation of β -isomers with either catalyst (Table 2) gave a relatively low percentage of the α isomer.

Hickinbottom et al.⁶ have deduced that in absence of any isomerisation reaction and with boron trifluoride, concentrated sulphuric acid or concentrated phosphoric acid as catalysts, mono-substitution occurs mainly at the α -position of naphthalene.

However more drastic conditions would increase the rate of alkylation-dealkylation. Although addition would be fast at positions of high electron availability $(\alpha$ -), substitution would be greater at positions giving the thermodynamically more stable β -isomer. The re-

907.
⁵ K. L. Nelson and H. C. Brown in 'The Chemistry of Petroleum Hydrocarbons,' ed. B. T. Brooks, S. S. Kurtz, C. E. Boord, and L. Schmerling, Reinhold, New York, 1955, vol. III.

⁶ M. Z. A. Badr and W. J. Hickinbottom, J. Chem. Soc., 1965, 4101.

¹ J. H. Simons and H. Hart, J. Amer. Chem. Soc., 1944, 66, 1309; 1947, 69, 979; T. M. Berry and E. E. Reid, *ibid.*, 1927, 49, 3142; B. W. Malishiv, *ibid.*, 1935, 57, 883; N. M. Cullinane

⁴ W. J. Hickinbottom, Rev. Chim. Roumania, 1962, 7, No. 2,

versibility of alkylation had been deduced by many workers.^{7,8}

The observation that isomerisation is retarded or even prevented by a halogen or nitro-substituent in the benzyl provides evidence that the change depends on the capacity to accept protons: this is supported by the observation that a methyl or methoxy-group in the benzyl group facilitates the change.

EXPERIMENTAL

Isomerisation.—(a) With toluene-p-sulphonic acid. The substituted-benzylnaphthalene was added to a dehydrated mixture of toluene-p-sulphonic acid (1 mol.) and naphthalene (4 mol.) and the mixture was stirred and heated at 125—130° for ca. 5 hr. The product was fractionally distilled under vacuum from the excess of naphthalene. From each of these products, the α -isomer or β -isomer was isolated as the picrate by crystallisation from ethanol.

(b) With aluminium chloride. Aluminium chloride (9 g.) was added to a mixture of substituted-benzylnaphthalenes (1 mol.) and naphthalene (10 mol.), in dry carbon disulphide. The reaction mixture was stirred and heated under reflux for *ca.* 3 hr. The isomerisation product was fractionally distilled under reduced pressure to remove excess of naphthalene.

Analysis.—The isomerisation products were analysed by high-temperature gas chromatography, Model 1709, flame ionisation attachment of F. and M. Scientific corporation Model 500, with copper columns, 6 ft. \times 4 mm. The columns used were, (a) 10% polyethylene glycol adipate on Chromosorb W (35—80 mesh) at 210° C, (b) 20% SE 30 on Chromosorb W (35—80 mesh) at 250°, then at 275° for some isomers. The experimental errors, estimated from comparative determinations, are about $\pm 1\%$.

7 N. M. Cullinane and S. J. Chard, Nature, 1948, 161, 690.

⁸ R. H. Allen, T. Alfery, jun., and L. D. Yats, *J. Amer. Chem. Soc.*, 1959, **81**, 42; R. H. Allen and L. D. Yats, *ibid.*, 1959, **81**, 5289; R. H. Allen, L. D. Yats, and D. S. Erley, *ibid.*, 1960, **82**, 4853; R. H. Allen and L. D. Yats, *ibid.*, 1961, **83**, 2799.

Preparation of Reference Compounds.— α - and β -Benzylnaphthalenes and the *p*-methyl-, *p*-methoxy-, *p*-chloro-, and *p*-bromo-benzylnaphthalenes were prepared by reduction of the corresponding arylnaphthylmethanols in dry ether by lithium aluminium hydride and aluminium chloride.⁹ The purity of each compound was established by v.p.c. Light petroleum refers to fraction of b.p. 80— 100°.

The following compounds are new:

p-Methoxyphenyl- α -naphthylmethanol; needles from light petroleum, m.p. 87-88° (Found: C, 81.9; H, 6.3. $C_{18}H_{16}O_2$ requires C, 81.8; H, 6.1%); α -(p-methoxy)benzylnaphthalene; microneedles from light petroleum, m.p. 87-88° (Found: C, 86.9; H, 6.8. C₁₈H₁₆O requires C, 87.1; H, 6.5%), picrate, crystals from ethanol, m.p. 106°; pmethoxyphenyl-β-naphthylmethanol; crystals from light petroleum, m.p. 72-73° (Found: C, 81.6; H, 6.5. $C_{18}H_{16}O_2$ requires C, 81.8; H, 6.1%; β -(p-methoxy)benzylnaphthalene; b.p. 245-250°/15 mm. white plates from ethanol, m.p. 57-58° (Found: C, 87.3; H, 6.5. C₁₈H₁₆O requires C, 87·1; H, 6·5%), picrate, m.p. 89°; p-bromophenyl- α -naphthylmethanol; crystals from light petroleum, m.p. 95-96° (Found: C, 65.5; H, 4.2; Br, 25.2. C₁₇H₁₃OBr requires C, 65.5; H, 4.1; Br, 25.6%); α-pbromobenzylnaphthalene; needles from methanol, m.p. 65-66° (Found: C, 68.8; H, 4.5; Br, 26.5. C₁₇H₁₃Br requires C, 68.7; H, 4.4; Br, 26.9%), picrate, crystals from ethanol, m.p. 132°; *p*-bromophenyl-β-naphthyl carbinol; crystallised from light petroleum (b.p. 40-60°), m.p. 95-96° (Found: C, 65·3; H, 4·4; Br, 25·3. C₁₇H₁₈Br requires C, 65.5; H, 4.1; Br, 25.6%); β -p-bromobenzylnaphthalene, needles from ethanol, m.p. 60-61° (Found: C, 68.5; H, 4.1; Br, 26.6. C₁₇H₁₃Br requires C, 68.7; H, 4.4; Br, 26.9%), picrate, crystals from ethanol, m.p. 110°.

[0/895 Received, May 29th, 1970]

⁹ J. Blackwell and W. J. Hickinbottom, J. Chem. Soc., 1961, 1405.