Reaction of AlR₃ with [CPh₃][B(C₆F₅)₄]: Facile Degradation of [B(C_6F_5)_4]^- by Transient "[AlR₂]⁺"

Manfred Bochmann* and Mark J. Sarsfield

School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K.

Received May 19, 1998

Trimethylaluminum reacts with $[CPh_3][B(C_6F_5)_4]$ at elevated temperatures to give a mixture of $AlMe_{3-x}(C_6F_5)_x$ compounds, depending on the Al/B ratio. $AlBu_{3}^{i}$ reacts significantly faster under β -hydride abstraction. The Al-C₆F₅ species rapidly react with Cp₂ZrMe₂ or $[Cp_2ZrMe]^+$ under C₆F₅ transfer to give poorly active Cp₂ZrMe(C₆F₅); this reaction may have implications for the deactivation of $Cp_2ZrMe_2/AlR_3/[CPh_3][B(C_6F_5)_4]$ olefin polymerization catalysts.

Introduction

As is now well established, highly active olefin polymerization catalysts can be generated by reacting metallocene dialkyls Cp_2MR_2 (M = Ti, Zr, Hf) with cation-generating agents, notably B(C₆F₅)₃, [HNMe₂Ph]- $[B(C_6F_5)_4]$, or $[CPh_3][B(C_6F_5)_4]$, to give complexes in which the highly electrophilic active species [Cp₂MR]⁺ is stabilized by weakly coordinating but chemically very robust counteranions such as $[MeB(C_6F_5)_3]^-$ and $[B(C_6F_5)_4]^{-.1}$ Because of the high sensitivity of these catalyst systems toward trace impurities the addition of aluminum alkyls is usually beneficial. For example, we have shown previously that the addition of 1 equiv of AlMe₃ stabilizes the 14-electron cation [Cp₂ZrMe]⁺ by formation of a heterobinuclear complex, $[Cp_2Zr(\mu -$ Me)₂AlMe₂]^{+,2} and Chien et al. have developed highly active catalysts based on mixtures of metallocene dichlorides and $[CPh_3][B(C_6F_5)_4]$ in the presence of an excess of AlMe₃ or AlEt₃.³

The success of these catalysts depends on the selective reaction of $B(C_6F_5)_3$ or $[CPh_3][B(C_6F_5)_4]$ with the transition metal alkyl complex in preference to reaction with the main group metal alkyl additive. This may seem at first glance surprising since it is not obvious why reactive electrophiles such as $B(C_6F_5)_3$ or CPh_3^+ should fail to react with a strong alkylating reagent such as AlMe₃. Indeed, we have shown earlier⁴ that the reaction of B(C₆F₅)₃ with Cp₂AlMe to give $[AlCp_2]^+[MeB(C_6F_5)_3]^$ is fast and quantitative even at low temperatures, and Jordan et al.⁵ recently reported the facile methyl anion abstraction from (benzamidinato)AlMe₂ compounds to give cationic aluminum methyl complexes.

Two reasons attracted our interest in analogous reactions of AlMe₃. First, although the Cp₂MR₂/[CPh₃]- $[B(C_6F_5)_4]/AIR_3$ catalysts mentioned above^{2,3} show very high initial activities, there is typically a significant reduction of activity with time. Little is known about the chemistry that underlies such catalyst deactivation processes,⁶ and we speculated that a decay of the pentafluorophenylborate anion, possibly with the participation of AlR₃, might be important. Second, while there are numerous cationic aluminum alkyls [AlR₂- $(L)_2$ ⁺ stabilized by N- and O-ligands,⁷ with the exception of the metallocenes $[AlCp_2]^+$ and $[AlCp_2]^+$ ⁸ cationic $[AIR_2]^+$ species free of donor ligands are not known, and we were intrigued by the possibility of stabilizing such species with weakly coordinating anions such as $[B(C_6F_5)_4]^-$.

Results

A solution of $[CPh_3][B(C_6F_5)_4]$ in toluene- d_8 was treated with a 10-fold molar excess of AlMe₃ and

⁽¹⁾ Reviews: Bochmann, M. J. Chem. Soc., Dalton Trans. 1996, 255. Brintzinger, H. H.; Fischer, D.; Mülhaupt, R.; Rieger, B.; Waymouth, R. M. Angew. Chem., Int. Ed. Engl. 1995, 34, 1143. Guram, A. S.; Jordan, R. F. In Comprehensive Organometallic Chemistry II; Abel, E. W., Stone, F. G. A., Wilkinson, G., Eds.; Elsevier: Oxford, 1995; Chapter 12.

⁽²⁾ Bochmann, M.; Lancaster, S. J. Angew. Chem., Int. Ed. Engl. 1994, 33, 1634. Bochmann, M.; Lancaster, S. J. J. Organomet. Chem. **1995**. *497*. 55.

⁽³⁾ Chien, J. C. W.; Xu, B. Makromol. Chem., Rapid Commun. 1993, 14, 109. Chien, J. C. W.; Tsai, W. M. Makromol. Chem., Macromol. Symp. 1993, 66, 141. Chien, J. C. W.; Song, W.; Rausch, M. D. J. Polym. Sci., Part A: Polym. Chem. 1994, 32, 2387.
(4) Dawson, D. M.; Bochmann, M. Angew. Chem. 1996, 108, 2371;

Angew. Chem., Int. Ed. Engl. 1996, 35, 2226.

⁽⁵⁾ Coles, M. P.; Jordan, R. F. J. Am. Chem. Soc. 1997, 119, 8125. Ihara, E.; Young, V. G.; Jordan, R. F. J. Am. Chem. Soc. 1998, 120, 8277. Radzewich, C. E.; Coles, M. P.; Jordan, R. F. J. Am. Chem. Soc. 1998, 120, 9384.

⁽⁶⁾ For examples of reactions likely to be involved in catalyst deactivation see: Kaminsky, W.; Sinn, H. Liebigs Ann. 1975, 424. Kaminsky, W.; Vollmer, H. J. Liebigs Ann. 1975, 438. Kaminsky, W.; Kopf, J.; Sinn, H.; Vollmer, H. J. Angew. Chem. **1976**, 88, 688; Angew. Chem., Int. Ed. Engl. **1976**, 15, 629. Takahashi, T.; Kasai, K.; Suzuki, N.; Nakajima, K.; Negishi, E. *Organometallics* **1994**, *13*, 3413. Shapiro, P. J.; Cotter, W. D.; Schaefer, W. P.; Labinger, J. A.; Bercaw, J. E. J. Am. Chem. Soc. 1994. 116, 4623. Bochmann, M.; Cuenca, T.; Hardy, D. T. J. Organomet. Chem. 1994, 484, C10. Lancaster, S. J.; Robinson, O. B.; Bochmann, M.; Coles, S. J.; Hursthouse, M. B. Organometallics 1995, 14, 2456. Jiménez Pindado, G.; Thornton-Pett, M.; Bowkamp, M.; Meetsma, A.; Hessen, B.; Bochmann, M. Angew. Chem., Int. Ed. Engl. 1997, 36, 2358. Jiménez Pindado, G.; Thornton-Pett, M.; Bochmann, M. J. Chem. Soc., Dalton Trans. 1997, 3115.

⁽⁷⁾ Tobias, R. S. Organomet. Chem. Rev. 1966, 1, 93. Bott, S. B.; Alvanipour, A.; Morley, S. D.; Atwood, D. A.; Means, C. M.; Coleman, Arvanpour, A.; Morley, S. D.; Atwood, D. A.; Means, C. M.; Coleman, A. W.; Atwood, J. L. Angew. Chem., Int. Ed. Engl. 1987, 26, 485. Engelhardt, L. M.; Kynast, U.; Raston, C. L.; White, A. H. Angew. Chem., Int. Ed. Engl. 1987, 26, 681. Self, M. F.; Pennington, W. T.; Laske, J. A.; Robinson, G. H. Organometallics 1991, 10, 36. Uhl, W.; Wagnen, L. Eangle, D.; Bourn, C. Z. Anger Allg. Cham. 1909, 612 Wagner, J.; Fenske, D.; Baum, G. Z. Anorg. Allg. Chem. 1992, 612,
 25. Atwood, D. A.; Jones, R. A.; Cowley, A. H.; Bott, S. G.; Atwood, J.
 L. J. Organomet. Chem. 1992, 425, C1. Atwood, D. A.; Jegier, J. Chem. Commun. 1996, 1507.

⁽⁸⁾ Dohmeier, C.; Schnöckel, H.; Robl, C.; Schneider, U.; Ahlrichs, R. *Angew. Chem., Int. Ed. Engl.* **1993**, *32*, 1655.

warmed to 60 °C. The reaction was monitored by ¹H, ¹¹B, and ¹⁹F NMR spectroscopy over 4.5 h. A slow reaction takes place; formation of MeCPh₃ is observed, along with BMe₃ [¹H NMR (toluene- d_8 , 60 °C) δ 0.74; ¹¹B NMR δ 86.8], and a new set of signals appears in the ¹⁹F NMR spectrum, at δ –121.5 (*o*-F), –152.2 (*p*-F), and –160.8 (*m*-F), in addition to unreacted [CPh₃]-[B(C₆F₅)₄]. In the presence of excess AlMe₃ the reaction is first-order in [CPh₃⁺], with $k_{obs} = 5 \times 10^{-5} \text{ s}^{-1}$ (at 60 °C). In the absence of AlMe₃ toluene solutions of [CPh₃]-[B(C₆F₅)₄] are stable under these conditions.

This observation demonstrates that methyl abstraction from AlMe₃ by CPh₃⁺ is very much less favorable than with transition metal methyl complexes but occurs slowly at elevated temperatures to give a transient species "[AlMe₂]⁺[B(C₆F₅)₄]⁻", which immediately decomposes to B(C₆F₅)₃ and AlMe₂(C₆F₅). Evidently cations such as [AlMe₂]⁺ (or possibly higher homologues, e.g., [Al₂Me₅]⁺ or [Al₃Me₈]⁺, which might be envisaged in the presence of excess AlMe₃) are too electrophilic to be stabilized even by [B(C₆F₅)₄]⁻ and immediately react with abstraction of C₆F₅⁻. The difference in reactivity between [AlMe₂]⁺ and the thermally stable complexes [AlCp₂]⁺ and [(benzamidinate)AlMe]⁺ is most probably due to the absence of any form of π -donor stabilization in the dialkyl species.

Further ligand exchange between $AIMe_{3-x}(C_6F_5)_x$ and $B(C_6F_5)_3$ can eventually lead to the formation of $AI(C_6F_5)_3$ and BMe_3 , which in an open system escapes into the gas phase, thereby shifting the equilibrium:

AlMe $(C_6F_5)_2$ + BMe $(C_6F_5)_2$ \rightarrow Al $(C_6F_5)_3$ + BMe₂ (C_6F_5)

$$BMe_2(C_6F_5) + AIMe_3 \rightarrow AIMe_2(C_6F_5) + BMe_3$$

The reaction of $B(C_6F_5)_3$ with AlMe₃ in toluene to afford $Al(C_6F_5)_3$ •0.5toluene and BMe_3 via a similar sequence of ligand redistribution processes has recently been described in a patent application by Biagini et al. as a convenient synthetic method for $Al(C_6F_5)_3$.^{9,10}

Under the conditions of the NMR experiment in the presence of an excess of AlMe₃ the major product of the reaction between $[CPh_3][B(C_6F_5)_4]$ and AlMe₃ is $[AlMe_2-(C_6F_5)]_2$. The identity of this species was confirmed by its independent preparation from a 2:1 mixture of AlMe₃ and Al(C₆F₅)₃·0.5toluene. Treating 2 equiv of AlMe₃ with Al(C₆F₅)₃·0.5toluene at 20 °C in toluene-*d*₈ in an NMR tube causes an immediate shift of the methyl resonance in the ¹H NMR spectrum from δ -0.37 to -0.08 ppm. Upon cooling the sample to -60 °C the methyl signal is

split into seven observable peaks (although additional smaller methyl signals appear obscured by more intense peaks), while three sets of C_6F_5 signals are observed in the ¹⁹F NMR spectrum. None of the signals are attributable to Al₂Me₆.¹¹ Warming to -20 °C results in broadening of all the signals in the ¹H and ¹⁹F NMR spectra, and at 20 °C the single methyl chemical shift value observed is the averaged chemical shift of the methyl groups of a number of isomers that are in rapid equilibrium with each other (Scheme 1). Similarly, 1:2 mixtures of AlMe₃ and Al(C_6F_5)₃·0.5toluene give predominantly [AlMe(C_6F_5)₂]₂. The pertinent NMR data of the C_6F_5 species reported here are collected in Table 1.

Mixing Al(C_6F_5)₃·0.5toluene with AlMe₃ in a ratio of 1:10 at room temperature in toluene on a preparative scale, followed by removal of the solvent in vacuo with mild heating, leads to the recovery of Al(C_6F_5)₃·0.5toluene. Isolation of the initial product, AlMe₂(C_6F_5), was not possible due to the evidently very facile ligand exchange and quantitative removal of excess AlMe₃ even under these mild conditions. In related recent work, Roesky et al. reported the synthesis of AlMe₂(C_6F_5) by the reaction of AlMe₂Cl with LiC₆F₅ as an uncharacterized intermediate which was converted to Al(C_6F_5)₃ by heating to 180 °C in vacuo.¹² Considering the facile ligand exchange in this system (Scheme 1) we find that such high temperatures are not required to shift the equilibrium toward Al(C_6F_5)₃.

The ¹⁹F NMR chemical shifts of all three aluminum C_6F_5 species AlMe_{3-x}(C_6F_5)_x (x = 1-3) are remarkably similar, with changes in the δ value of *para*-F being most indicative, though identification is possibly by ¹H NMR. More pronounced changes are seen when the exchange process is suppressed by adduct formation with diethyl ether. The addition of excess Et₂O to NMR samples of AlMe₂(C_6F_5) in toluene-d₈ at 20 °C results in the formation of $AlMe_2(C_6F_5)$ ·Et₂O as the major product, together with small amounts of $AIMe(C_6F_5)_2$. Et_2O and $AlMe_3 \cdot Et_2O$. Likewise, addition of Et_2O to AlMe $(C_6F_5)_2$ gives AlMe $(C_6F_5)_2$ ·Et₂O as the major product, with small amounts of $AlMe_2(C_6F_5) \cdot Et_2O$ and AlMe₃·Et₂O also being detectable. The adducts were characterized by ¹H, ¹⁹F, and ¹³C{¹H} NMR spectroscopy (Table 1). Surprisingly, although Roesky et al.¹² isolated a crystalline THF adduct of $Al(C_6F_5)_3$, the compound appears not to form a complex with Et₂O in toluene solution, possibly for steric reasons.

To test the suitability of the reaction of AlMe₃ with $[CPh_3][B(C_6F_5)_4]$ as a synthetic route for Al(C₆F₅)₃, a 10:1 mixture of the two reactants was heated at 65 °C over 14 h. Triphenylethane was produced, and the color of the solution changed from orange to pale yellow.

⁽⁹⁾ Biagini, P.; Lugli, G.; Abis, L.; Andreussi, P. Eur. Patent Appl. EP 0 694 548 A1, 1996 (Enichem Elastomeri S.r.l.).

⁽¹⁰⁾ Ligand redistribution processes in the borate $[BBu_n(C_6F_5)_{4-n}]^-$ have been observed: Dioumaev, V. K.; Harrod, J. F. *Organometallics* **1997**, *16*, 2798.

⁽¹¹⁾ Williams, K. C.; Brown, T. L. J. Am. Chem. Soc. 1966, 88, 5460.
(12) Belgardt, T.; Storre, J.; Roesky, H. W.; Noltemeyer, M.; Schmidt, H. G. Inorg. Chem. 1995, 34, 3821.

Table 1 I and - I twik Data of Cars Compound	Table 1.	¹ H and	¹⁹ F NMR	Data of	C ₆ F ₅	Compound
--	----------	--------------------	---------------------	---------	-------------------------------	----------

			19 F NMR (<i>J</i> _{FF} , Hz)		
compound	¹ H NMR	<i>o</i> -F	<i>p</i> -F	m-F ^b	
$AlMe_2(C_6F_5)^a$	-0.08 (Me)	-122.5 (16.9)	-151.9 (br)	-161.0	
$AlMe(C_6F_5)_2^a$	0.04 (Me)	-122.4 (16.9)	-151.4	-161.0	
Al(C ₆ F ₅) ₃ •0.5toluene		$-122.7 (20.9)^{a}$	$-151.3 (21.2)^{a}$	-161.1^{a}	
		$-121.9(21)^{c}$	$-149.6 (21)^{c}$	-160.4°	
$AlMe_2(C_6F_5) \cdot OEt_2^a$	-0.36 (Me)	-122.5 (28.2)	-155.1 (19.8)	-161.8	
	0.69, 3.31 (Et ₂ O)				
$AlMe(C_6F_5)_2 \cdot OEt_2^a$	-0.18 (Me)	-123.1 (28.2)	-152.8 (19.8)	-161.0	
	0.88, 3.32 (Et ₂ O)				
$Cp_2ZrMe(\mu-Me)Al(C_6F_5)_3$ ^c	-0.26 (µ-Me)	-124.0 (16.9)	-155.2 (19.8)	-162.6	
	0.51 (Zr-Me)				
	6.44 (Cp)				
$Cp_2ZrMe(C_6F_5)^{a}$	0.31 (Me)	-115.2 (25.4)	-156.7 (19.8)	-162.2	
-	5.66 (Cp)				

^a Toluene-d₈, 20 °C. ^b Multiplets or broadened signals. ^c CD₂Cl₂, -60 °C.

Scheme 2

 $A|Bu_{3}^{i} + [CPh_{3}][B(C_{6}F_{5})_{4}] \longrightarrow Ph_{3}CH + "[A|Bu_{2}^{i}]^{+}[B(C_{6}F_{5})_{4}]^{-n} + \sum$

 $AIBu_{3-x}^{i}(C_{6}F_{5})_{x} + BBu_{x}^{i}(C_{6}F_{5})_{3-x}$

Removal of the solvent and drying for 4 h in vacuo produced a light brown oily solid. The ¹⁹F NMR spectrum shows a major product in approximately 50% yield with chemical shifts identical to an authentic sample of $Al(C_6F_5)_3$. 0.5 toluene. However, the remaining 50% of the signals were due to other C_6F_5 species which could not be identified, and the reaction is evidently less clean than the reaction of $AlMe_3$ with $B(C_6F_5)_3$.

In contrast to the rather slow reaction between AlMe₃ and [CPh₃][B(C₆F₅)₄] which is initiated by *alkyl* abstraction, the reaction of AlBuⁱ₃ with [CPh₃][B(C₆F₅)₄] involves *hydride* abstraction¹³ and isobutene elimination (Scheme 2). This reaction proceeds very much faster: at 20 °C a toluene solution of [CPh₃][B(C₆F₅)₄] discolors immediately on addition of AlBuⁱ₃, and the ¹⁹F NMR shows that all [B(C₆F₅)₄]⁻ has been consumed, with formation of BBuⁱ₃, BBuⁱ₂(C₆F₅), and BBuⁱ(C₆F₅)₂ (but not, under these conditions, B(C₆F₅)₃).

Implications for the Deactivation Process of Metallocene Catalysts. The foregoing results show that the reaction of aluminum alkyls with $[CPh_3]$ - $[B(C_6F_5)_4]$ or $B(C_6F_5)_3$ can lead to aluminum pentafluorophenyl compounds, with borate degradation in the presence of aluminum alkyls bearing β -hydrogens being particularly facile. As pointed out in the Introduction, catalyst deactivation processes are as yet little understood, and the possible contribution of $Al-C_6F_5$ species to catalyst deactivation was therefore of interest.

Treatment of Cp₂ZrMe₂ with an equimolar amount of Al(C₆F₅)₃·0.5toluene in CD₂Cl₂ at -60 °C leads immediately to the quantitative formation of Cp₂ZrMe-(μ -Me)Al(C₆F₅)₃, according to ¹H, ¹³C, and ¹⁹F NMR spectroscopy (Scheme 3). The ¹H NMR spectrum shows Cp, Zr-Me, and Zr-Me-Al resonances at δ 6.44, 0.51, and -0.26 ppm, respectively. In the ¹³C{¹H} spectrum the Cp and Zr-Me signals are present at δ 113.9 and 40.5 ppm, the μ -Me signal is broad and centered at δ 7.9 ppm. Only one set of C₆F₅ signals in the ¹⁹F spectrum are observed (Table 1) which are entirely

different from Al(C₆F₅)₃·0.5toluene in CD₂Cl₂ at -60 °C (cf. Table 1). Attempts to isolate this product resulted only in the formation of a number of Cp complexes, one of which is identified as Cp₂ZrMe(C₆F₅). We conclude that Al(C₆F₅)₃ interacts with Cp₂ZrMe₂ in a way similar to B(C₆F₅)₃¹⁴ to give initially zwitterionic methyl-bridged complexes, but that redistribution of C₆F₅ ligands from aluminum to zirconium proceeds much more readily than in the case of B(C₆F₅)₃ (Scheme 2), as observed for example by Marks et al., who noted the slow decomposition of Cp["]₂ZrMe(μ -Me)B(C₆F₅)₃ to Cp["]₂ZrMe(C₆F₅) by Me/C₆F₅ exchange with a half-life of 10 h at room temperature [Cp["] = C₅H₃(SiMe₃)₂].¹⁵

At 20 °C a benzene- d_6 solution of Cp₂ZrMe₂ reacts immediately with Al(C₆F₅)₃ in a 1:1 molar ratio with formation of two major Cp compounds, one of which was identified as Cp₂ZrMe(C₆F₅), while the other could not be assigned. The formation of Cp₂Zr(C₆F₅)₂¹⁶ could not be detected, even in the presence of an excess of Al(C₆F₅)₃. By contrast, the reaction of [Cp₂Zr(μ -H)-(C₆F₅)]₂ with [CPh₃][BBu_n(C₆F₅)_{4-n}] has been reported to proceed rapidly to give Cp₂Zr(C₆F₅)₂ and other decomposition products.¹⁰ On a preparative scale Al-(C₆F₅)₃•0.5toluene reacts with Cp₂ZrMe₂ in a 1:3 ratio to give Cp₂ZrMe(C₆F₅) in 54% yield. The same product results from a 1:1 mixture of Cp₂ZrMe₂ and AlMe₂(C₆F₅) in toluene- d_8 at 20 °C; the reaction is quantitative.

⁽¹³⁾ For examples of β -H abstraction of main group alkyls by CPh₃⁺ see: Jerkunica, J. M.; Traylor, T. G. *J. Am. Chem. Soc.* **1971**, *93*, 6278. Hannon, J. S.: Traylor, T. G. *J. Org. Chem.* **1981**, *46*, 3645.

⁽¹⁴⁾ Yang, X.; Stern, C. L.; Marks, T. J. J. Am. Chem. Soc. 1991, 113, 3623. Deck, P. A.; Marks, T. J. J. Am. Chem. Soc. 1995, 117, 6128.
Siedle, A. R.; Newmark, R. A. J. Organomet. Chem. 1995, 497, 119.
(15) Yang, X.; Stern, C. L.; Marks, T. J. J. Am. Chem. Soc. 1994, 116, 10015. Gomez, R.; Green, M. L. H.; Haggit, J. L. J. Chem. Soc.

Dalton Trans. 1996, 939. (16) Chaudhari, M. A.; Stone, F. G. A. J. Chem. Soc. A 1966, 838.

The above discussion shows that under certain circumstances, and particularly if AlBuⁱ₃/[CPh₃][B(C₆F₅)₄] mixtures are used in catalyst preparation, the transfer of C_6F_5 to zirconium may be facile. The deactivating effect of C_6F_5 was assessed by reacting $Cp_2ZrMe(C_6F_5)$ with $[CPh_3][B(C_6F_5)_4]$ and $B(C_6F_5)_3$, to give $[\{Cp_2Zr (C_6F_5)_2(\mu-Me)$ [B(C₆F₅)₄] and Cp₂Zr(C₆F₅)($\mu-Me$)B(C₆F₅)₃, respectively.¹⁷ Although at comparatively high zirconium concentrations (1 mM) some ethylene polymerization was observed, the activities are very poor compared to Cp₂ZrMe₂/activator mixtures. On the other hand, if conditions that can give rise to "[AlR₂]+" (such as premixing CPh_3^+ with AlR₃) are avoided, the system $Cp_2ZrMe_2/AlR_3/[CPh_3][B(C_6F_5)_4]$ is thermally stable. For example, heating equimolar mixtures of Cp₂ZrMe₂ and $[CPh_3][B(C_6F_5)_4]$ in toluene- d_8 for 1 h at 60 °C, followed by heating for a further 2 h in the presence of AlMe₃ (Al/Zr = 4), led to a darkening of the samples, but no degradation of the $[B(C_6F_5)_4]^-$ anion was observed by ¹⁹F NMR.

Conclusion

Aluminum alkyl cocatalysts in MAO-free metallocene systems are capable of reacting with the catalyst activators B(C₆F₅)₃ and [CPh₃][B(C₆F₅)₄] at elevated temperatures with formation of $AlMe_{3-x}(C_6F_5)_x$ compounds. The degradation of $[B(C_6F_5)_4]^-$ is initiated by a highly electrophilic transient " $[AIR_2]^+$ " species. The value of *x* depends on the ratio of C₆F₅:Me ligands in the system. Aluminum alkyls carrying β -hydrogens such as AlBuⁱ₃ react with CPh₃⁺ under hydride abstraction and alkene elimination; this reaction leads to the rapid consumption of $[B(C_6F_5)_4]^-$ even at ambient temperatures. Al $(C_6F_5)_3$ reacts with Cp_2ZrMe_2 to give the adduct $Cp_2ZrMe(\mu$ -Me)Al(C₆F₅)₃ which is stable only at low temperatures and on warming reacts under C₆F₅ transfer from aluminum to zirconium. At room temperature and above Cp_2ZrMe_2 reacts rapidly with $AlMe_{3-x}(C_6F_5)_x$ to give $Cp_2ZrMe(C_6F_5)$. The ethene polymerization activity of $Cp_2ZrMe(C_6F_5)/B(C_6F_5)_3$, mixtures is about 3 orders of magnitude lower that that of $Cp_2ZrMe_2/B(C_6F_5)_3$, an illustration of the deactivating consequence of C_6F_5 transfer reactions.

Experimental Section

All manipulations were carried out with the use of Schlenk, vacuum-line, and glovebox techniques. Light petroleum (bp 40-60 °C), toluene, and diethyl ether were distilled under nitrogen from sodium-potassium alloy. Deuterated solvents were dried over Linde 4 Å molecular sieves and deoxygenated via several freeze-thaw cycles. AlMe₃ (97%, Aldrich) was used as purchased. The compounds Cp₂ZrMe₂,¹⁸ B(C₆F₅)₃,¹⁹ and $[CPh_3][B(C_6F_5)_4]^{20}$ were prepared by literature methods. The ¹H, ¹³C, ¹¹B, and ¹⁹F NMR spectra were recorded on a Bruker DPX300 instrument. ¹H and ¹³C NMR spectra were referenced to residual solvent peaks relative to TMS; ¹¹B and ¹⁹F spectra were referenced externally to BF3·Et2O and CFCl3, respectively.

Synthesis of Al(C₆F₅)₃·0.5toluene. This compound was prepared by modification of a literature procedure.⁹ CAU-**TION:** Al(C₆F₅)₃ has been reported to detonate on attempted sublimation at elevated temperatures.²¹ A solution of B(C₆F₅)₃ (3.55 g, 6.94 mmol) in toluene (20 mL) was added to a solution of AlMe₃ (0.50 g, 6.94 mmol) in toluene (40 mL) at room temperature. A precipitate formed after 0.5 h, and the reaction was left to stir for 16 h. The solid was isolated and dried under vacuum for 3 h to give $Al(C_6F_5)_3$.0.5toluene as a white microcrystalline solid (1.8 g). The filtrate was concentrated and placed in the freezer overnight and provides another 1.5 g. combined yield 3.3 g (5.74 mmol, 83%)

Reaction of AlMe₃ with [CPh₃][B(C₆F₅)₄]. For monitoring the reaction by NMR, a solution of $[CPh_3][B(C_6F_5)_4]$ (0.014 g, 15 μ mol) in toluene- d_8 (0.4 mL) was treated with a solution of AlMe₃ (0.6 mL, 0.11 M, 66 μ mol) in toluene- d_8 and immediately placed in the spectrometer heated to 60 °C. The reaction was monitored via ¹H and ¹⁹F NMR over a period of 4.5 h. Signals for AlMe₂(C₆F₅) grew in and became the major species after 4.5 h. No other products were seen. The reaction is first-order in triphenylmethyl salt, $k_{obs} = 5 \times 10^{-5} \text{ s}^{-1}$.

In a separate experiment, a toluene solution (5 mL) of [CPh₃]- $[B(C_6F_5)_4]$ (0.202 g, 0.22 mmol) was treated with a toluene solution of AlMe₃ (3 mL, 1.5 M, 4.50 mmol). The reagents were heated at 65 °C for 14 h before the solvent was removed, and the light brown oily residue was dried under vacuum for 4 h. A sample of the crude product contained $Al(C_6F_5)_3$ as the major product in 50% yield by ¹⁹F NMR spectroscopy. NMR ¹⁹F (toluene- d_8) $\delta - 122.7$ (d, J = 20.9 Hz, $\bar{6}F$, o-F), -151.3 (t, J =21.2 Hz, 3F, p-F), -161.1 (m, 6F, m-F).

Reaction of AlBuⁱ₃ with [CPh₃][B(C₆F₅)₄]. An NMR tube containing [CPh₃][B(C₆F₅)₄] (0.012 mmol) was reacted with a solution of AlBuⁱ₃ (0.070 mmol) in toluene-d₈ at 20 °C. The solution turned from orange to colorless *immediately*, and the ¹⁹F NMR spectrum contained no signals due to $[B(C_6F_5)_4]^-$. Apart from the reaction products isobutene and triphenylmethane, signals were observed for AlBui₂(C₆F₅) [¹H NMR δ 1.99 (m, 1H, CH), 0.97 (d, 6H, J = 6.5 Hz, CH₃), 0.28 (d, 2H, J = 7.2 Hz, CH₂); ¹⁹F NMR δ -120.7 (m, 2F), -152.5 (t, 1F, J = 19.8 Hz), -161.6 (m, 2F)], BBuⁱ(C₆F₅)₂ [-130.9 (m, 2F), -147.4 (t, 2F, J = 21.2 Hz), -161.1 (m, 2F)], and BBuⁱ₂(C₆F₅) [-134.3 (m, 2F), -153.3 (t, 1F, J = 19.7 Hz), -161.8 (m, 2F)]but not $B(C_6F_5)_3$. The ¹¹B and ¹H NMR spectra show the presence of BBuⁱ₃ [¹H NMR δ 1.56 (m, 1H, CH), 1.16 (d, 2H, J = 7.0 Hz, CH₂), 0.88 (d, 6H, J = 6.5 Hz, CH₃); ¹¹B NMR δ 88.1].22

Reaction of 2 Al(C₆F₅)₃·0.5toluene with AlMe_{3.} A solution of Al(C₆F₅)₃·0.5toluene (43 mg, 76 μ mol) in toluene- d_8 (0.5 mL) was treated with a solution of AlMe₃ (0.1 mL, 0.38 M, 38 μ mol) in toluene- d_8 at 20 °C to form [AlMe(C₆F₅)₂]₂. The sample was cooled to -60 °C, and three major and three minor methyl signals could be seen in the ¹H NMR spectrum at δ (rel int) 0.34(1.2), 0.26(8.9), 0.09(7.2), -0.26(10.0), -0.34(4.5), -0.51(3.8), and -0.57 (3.1). Three sets of peaks for C_6F_5 groups are seen in the ¹⁹F NMR spectrum, at δ (rel int) –122.4 (40.0), -122.7 (12.6), -123.1 (3.2) (o-F), -150.1 (1.6), -151.2 (20.0), -152.4 (6.3) (p-F), and -160.1 (3.2), -160.4 (40.0), -160.9 (12.6) (*m*-F). At 20 °C [AlMe(C_6F_5)₂]₂ is characterized by the following NMR parameters: ¹H NMR (toluene- d_8 , 20 °C) δ 0.04 (s, br, Me); $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR (toluene- d_{8} , 20 °C) δ 150.0 (dm, J_{CF} = 236 Hz, o-CF), 142.3 (dm, J_{CF} = 254 Hz, p-CF), 137.2 (dm, $J_{\rm CF} = 254$ Hz, *m*-CF), -6.9 (Me); ¹⁹F NMR (toluene- d_8 , 20 °C) δ -122.4 (d, J = 16.9 Hz, 6F, o-F), -151.4 (s, br, 3F, p-F), -161.0 (s, br, 6F, m-F).

Formation of AlMe(C₆F₅)₂·Et₂O. An excess of diethyl ether was added to the above solution at 20 °C. ¹H NMR

⁽¹⁷⁾ A mixture of 50 μ mol Cp₂ZrMe(C₆F₅) and 50 μ mol B(C₆F₅)₃ in (17) A mixture of 50 μmol Cp₂ZrMe(C₆F₅) and 50 μmol B(C₆F₅)₃ in toluene (50 mL) at 50 °C under 1 bar ethene gave 0.2 g of PE after 1 h, corresponding to a productivity of 4 kg PE (mol Zr)⁻¹·bar⁻¹·h⁻¹. Although recrystallized Cp₂ZrMe(C₆F₅) was used, the possibility of the presence of traces of Cp₂ZrMe₂ cannot be entirely discounted.
(18) Samuel, E.; Rausch, M. D. J. Am. Chem. Soc. 1973, 95, 6263.
(19) Massey, A. G.; Park, A. J. J. Organomet. Chem. 1992, 430.
(20) Bochmann, M.; Lancaster, S. J. J. Organomet. Chem. 1992, 434.
C1 Chian L.C. W. Pausch, M. D. J. Am. Chem. Soc. 1991, 1/3, 8570.

C1. Chien, J. C. W.; Rausch, M. D. J. Am. Chem. Soc. 1991, 113, 8570.

⁽²¹⁾ Pohlmann, J. L. W.; Brinckmann, F. E. Z. Naturforsch. B 1965, 20b, 5. Chambers, R. D. Organomet. Chem. Rev. **1966**, *1*, 279. (22) Davies, A. G.; Hare, D. G.; White, R. F. M. J. Chem. Soc. **1960**,

^{1040.} Mikhailov, B. M.; Kuimova, M. E. Bull. Acad. Sci. USSR, Div. Chem. Sci. 1979, 288.

(toluene- d_8 , 20 °C): δ 3.32 (q, J = 7.0 Hz, 4H, OC H_2 CH₃), 0.88 (t, J = 7.0 Hz, 6H, OCH₂CH₃), -0.18 (t, ${}^5J_{\rm HF}$ = 1.2 Hz, 3H, Me–Al). 13 C{ 1 H} (toluene- d_8 , 20 °C): δ 67.1 (OCH₂CH₃), 14.5 (OCH₂CH₃), -6.91 (s, br, Me–Al). 19 F (toluene- d_8 , 20 °C): δ -123.1 (d, J = 28.2 Hz, 6 F, o-F), -152.8 (t, J = 19.8 Hz, 3 F, p-F), -161.0 (m, 6 F, *m*-F). Small amounts of AlMe₂(C₆F₅)· Et₂O (see below) and AlMe₃·Et₂O are also present. AlMe₃· Et₂O: 1 H (toluene- d_8 , 20 °C): δ -0.51 (s, 9H, Me–Al); 13 C{ 1 H} (toluene- d_8 , 20 °C) δ -7.7 (s, br, Me–Al). The diethyl ether signals quoted are a time-averaged value of all AlMe_{3-x}(C₆F₅)_x· Et₂O species and free diethyl ether in equilibrium.

Reaction of Al(C_6F_5)₃·0.5toluene with 2AlMe₃. A solution of Al(C_6F_5)₃·0.5toluene (43 mg, 76 μ mol) in toluene- d_8 (0.2 mL) was treated with a solution of AlMe₃ (0.4 mL, 0.38 M, 152 μ mol) in toluene- d_8 and placed in the spectrometer at 20 °C. The sample was cooled to -60 °C, and at least seven separate methyl signals could be seen, which coalesce to one singlet at 20 °C. [AlMe(C_6F_5)₂]₂: ¹H NMR (toluene- d_8 , 20 °C) δ -0.08 (s, br, 3H, Me); ¹³C{¹H} NMR (toluene- d_8 , 20 °C) δ 150.1 (dm, $J_{CF} = 249$ Hz, o-C), 142.3 (dm, $J_{CF} = 249$ Hz, p-CF), 137.2 (dm, $J_{CF} = 249$ Hz, m-CF), -7.3 (Me); ¹⁹F NMR (toluene- d_8 , 20 °C) δ -122.5 (d, J = 16.9 Hz, 6F, o-F), -151.9 (s, br, 3F, p-F), -161.0 (s, br, 6F, m-F).

Formation of AlMe₂(C₆F₅)·Et₂O. An excess of diethyl ether was added to the above solution. ¹H NMR (toluene-*d*₈, 20 °C): δ 3.31 (q, J = 7.0 Hz, 4 H, OCH₂CH₃), 0.69 (t, J = 7.2 Hz, 6H, OCH₂CH₃), -0.36 (t, ⁵*J*_{HF} = 1.1 Hz, 6H, Me–Al). ¹³C-{¹H} (toluene-*d*₈, 20 °C): δ 67.4 (OCH₂CH₃), 13.4 (OCH₂CH₃), -8.1 (s, br, Me–Al). ¹⁹F (toluene-*d*₈, 20 °C): δ -122.5 (d, J = 28.2 Hz, 6F, o-F), -155.1 (t, J = 19.8 Hz, 3F, p-F), -161.8 (m, 6F, *m*-F). Small amounts of AlMe(C₆F₅)₂·Et₂O and AlMe₃·Et₂O are also present.

Generation of Cp₂ZrMe(μ -**Me**)**Al**(**C**₆**F**₅)₃. A solution of Cp₂ZrMe₂ (12 mg, 48 μ mol) in CD₂Cl₂ (0.6 mL) was treated with Al(C₆F₅)₃·0.5toluene (29.4 mg, 51 μ mol) in an NMR tube at -78 °C and then placed in the spectrometer cooled to -60 °C. An immediate reaction occurs providing a quantitative conversion to Cp₂ZrMe(μ -Me)Al(C₆F₅)₃. ¹H NMR (CD₂Cl₂, -60 °C): δ 6.44 (s, 10H, Cp), 0.51 (s, 3H, Zr-Me), -0.26 (s, 3H, Me-Al). ¹³C{¹H} NMR (CD₂Cl₂, -60 °C): δ 149.8 (dm, *J*_{CF} = 234 Hz, *o*-CF), 141.0 (dm, *J*_{CF} = 249 Hz, *p*-CF), 136.7 (dm, *J*_{CF} = 226 Hz, *m*-CF), 113.9 (Cp), 40.5 (Zr-Me), 7.9 (br, Me-Al). ¹⁹F NMR (CD₂Cl₂, -60 °C): δ -124.0 (d, *J* = 16.9 Hz, 6H, *o*-F), -155.2 (t, *J* = 19.8 Hz, 3F, *p*-F), -162.6 (m, 6F, *m*-F).

Generation of Cp₂Zr(C₆F₅)(μ -**Me**)**B**(C₆F₅)**.** A sample of Cp₂ZrMeC₆F₅ (19 mg, 0.053 mmol) in CD₂Cl₂ (0.3 mL) was treated with B(C₆F₅)₃ (28.5 mg, 0.056 mmol) in CD₂Cl₂ (0.3 mL) at -78 °C and placed in the spectrometer at -50 °C. Immediate formation of Cp₂Zr(C₆F₅)(μ -Me)B(C₆F₅)₃ was observed. The Zr-C₆F₅ moiety shows hindered rotation at low temperature. ¹H NMR (CD₂Cl₂): δ 0.56 (bs, 3H, B–Me), 6.60 (s, 10H, Cp). ¹³C{¹H} NMR: δ 116.1 (Cp), 33.8 (B–Me). ¹¹B NMR: δ -11.1. ¹⁹F NMR (-80 °C): δ 112.6 (d, 1F, *J* = 28.0 Hz, *o*-F of Zr-C₆F₅), -114.1 (d, 1F, *J* = 28.0 Hz, *o*-F of Zr-C₆F₅), -152.3 (t, 1F, *J* = 19.8 Hz, *p*-F of Zr-C₆F₅), -158.2 (t, 3F, *J* = 21.2 Hz, *p*-F of B-C₆F₅), -159.4 (m, 1F, *m*-F of B-C₆F₅), -160.0 (m, 1F, *m*-F of Zr-C₆F₅), -163.3 (m, 6F, *m*-F of B-C₆F₅).

Generation of [{**Cp**₂**Zr**(**C**₆**F**₅)₂(μ -**Me**)][**B**(**C**₆**F**₅)₄]. A sample of Cp₂ZrMeC₆F₅ (16 mg, 0.045 mmol) in CD₂Cl₂ (0.3 mL) was treated with [CPh₃][B(C₆F₅)₄] (0.024 mmol) in CD₂Cl₂ (0.3 mL) at -78 °C and placed in the spectrometer at -50 °C. There was a slow reaction to give [{Cp₂Zr(C₆F₅)₂(μ -Me)][B(C₆F₅)₄]. Complete conversion took 160 min at -30 °C. ¹H NMR (CD₂-Cl₂): δ 6.56 (s, 20H, Cp), -0.029 (bs, 3H, μ -Me). ¹³C{¹H} NMR: δ 115.0 (Cp), μ -Me not observed. ¹¹B NMR: δ -14.5. ¹⁹F NMR (-80 °C): δ 113.1 (d, 2F, J = 25.0 Hz, ρ -F of Zr-C₆F₅), -119.3 (d, 2F, J = 25.0 Hz, ρ -F of Zr-C₆F₅), -158.3 (m, 2F, *m*-F of Zr-C₆F₅), -159.3 (m, 2F, *m*-F of Zr-C₆F₅), -160.9 (m, 4F, p-F of B-C₆F₅), -164.9 (m, 8F, *m*-F of B-C₆F₅).

Reaction of Al(C₆F₅)₃·0.5toluene with Cp₂ZrMe₂ at 20 °C. A C₆D₆ solution of Cp₂ZrMe₂ (24 mg, 95 μ mol) was treated with Al(C₆F₅)₃·0.5toluene (18.5 mg, 32 μ mol) in an NMR tube at room temperature. An immediate reaction occurs providing a quantitative conversion to Cp₂ZrMe(C₆F₅).

In a preparative scale reaction two separate Schlenk tubes were charged with Cp₂ZrMe₂ (0.641 g, 2.55 mmol) in one and $Al(C_6F_5)_3$ ·0.5toluene (0.467 g, 0.85 mmol) in the other. Both were dissolved in toluene (ca. 10 mL). The Al(C₆F₅)₃ solution was added to Cp₂ZrMe₂ at 20 °C. The reaction mixture was stirred for 10 min before filtering and cooling to -78 °C over 48 h. A pale yellow precipitate was isolated, washed twice with light petroleum, and dried in vacuo, to yield $Cp_2ZrMe(C_6F_5)$ (0.55 g, 1.36 mmol, 54%). ¹H NMR (C₆D₆, 20 °C): δ 5.66 (s, 10H, Cp), 0.31 (t, ${}^{5}J_{\rm HF}$ = 4.1 Hz, 3H, Me). ${}^{13}C{}^{1}H$ NMR (C₆D₆, 20 °C): $\delta^{13}C{^1H}$ NMR (CD₂Cl₂, -60 °C): $\delta^{145.4}$ (dm, J_{CF} = 226 Hz, o-CF), 139.5 (dm, J_{CF} = 251 Hz, p-CF), 136.8 (dm, J_{CF} = 255 Hz, *m*-CF), 111.4 (Cp), 45.4 (t, ${}^{4}J_{CF}$ = 6.0 Hz, Me). ${}^{19}F$ NMR (C₆D₆, 20 °C): δ -115.2 (d, J = 25.4 Hz, 6H, o-F), -156.7 (t, J = 19.8 Hz, 3F, p-F), -162.2 (m, 6F, m-F). MS (EI): m/e(%) 402 (2) (M⁺), 387 (80) [M⁺ - Me], 239 (85) [M⁺ - C₆F₅], 220 (100) [Cp₂Zr].

Reaction of AlMe₂(C₆F₅) with Cp₂ZrMe₂. A sample of AlMe₂(C₆F₅) (228 μ mol), prepared from Al(C₆F₅)₃·0.5toluene (43 mg, 76 μ mol) and AlMe₃ (0.4 mL, 0.38 M, 152 μ mol) in toluened₈ as discussed above, was added to Cp₂ZrMe₂ (57 mg, 228 mmol) at 20 °C. An immediate reaction takes place with quantitative conversion to Cp₂ZrMe(C₆F₅) and AlMe₃, identified by comparison with authentic samples.

Thermal Stability of [**C**_{P2}**ZrMe**][**B**(**C**₆**F**₅)₄]. In a control experiment, 13 mg (14 μ mol) of [CPh₃][B(C₆**F**₅)₄] and Cp₂ZrMe₂ (14 μ mol) were mixed in an NMR tube at room temperature in 0.5 mL of toluene-*d*₈. The ¹⁹F NMR spectrum of the mixture was monitored at 60 °C for 1 h; there was no indication of anion degradation. Next, AlMe₃ (66 μ mol) was added and heating was continued for another 2 h. No change in the signals for [B(C₆F₅)₄]⁻ was observed.

Acknowledgment. This work was supported by BP Chemicals Ltd., Sunbury. We thank Drs. P. Brès and B. Dorer for helpful discussions.

OM980400J