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Abstract: Stereocontrolled synthesis of myxovirescin A} (1a). a 28-membered macrolactam lactone, is accomplished
via a highly convergent route. Ring closure of the macrocycle is realized by macrolactamization using the Mukaiyama
procedure.

The myxovirescins, consisting of thirty-one macrolactam lactone antibiotics, were first isolated from the
fermentation broth of Myxococcus virescin (Mx v 48).1 A predominant component, myxovirescin A1, inhibits
the growth of E. coli and other enterobacteria.2 The structure elucidation of myxovirescin Aj (1a) was
accomplished by X-ray crystallography of the bisacetonide of 1a in conjunction with degradation experiments.13
We have previously reported total synthesis of myxovirescin B (1¢), demonstrating ring closure via the
intramolecular Horner-Emmons reaction. Myxovirescin Mz (1b) was synthesized by Seebach and coworkers,’
using a Yamaguchi macrolactonization. Herein, we report the total synthesis of myxovirescin A, establishing
construction of the anti-1,3-dimethyl substitution pattern for C25-C27 and a new strategy for ring closure
affording these antibiotics via macrolactamization.

CH,

Myxovirescin A, (1) R = CH,OMe Myxovirescin B (1g)
Myxovirescin M (1k) R = CH,

Our initial efforts to selectively produce the 25(R), 27(R)-dimethyl substitution of Myxovirescin Aj via
conjugate hydride reductions of 1¢ and its protected derivatives were not satisfactory. This led us to redesign
our synthesis strategy to accommodate introduction of the 1,3-anti-dimethyl substituents of 1a as illustrated in
Scheme I. Conjugate addition to the 4(S)-benzyl-2-oxazolidinone 26 occurred with high diastereofacial
selectivity using the organocopper-boron trifluoride procedure developed by Yamamoto.? Thus, 3-benzyloxy-
2(R)-methyl-1-bromopropane was converted to its corresponding Grignard reagent (Mg®, THF, reflux) followed
by addition of purified cuprous iodide (1 equiv. at -30 °C, 0.5 hr) with subsequent cooling to -78 °C and
dropwise introduction of freshly distilled BF3+Et20 (1.0 equiv.). The organocopper species 3 afforded
oxazolidinone 4 in nearly quantitative yield (96%) as a 9:1 ratio of C-25 isomers. Other preparations for mixed
Gilman reagents or cuprates, derived from our starting bromide, gave reduced yields and problematic mixtures
of diastereomers.
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The diastereoselection of our conjugate addition is rationalized by Lewis acid coordination to provide, for
steric reasons, an enhanced preference for the s-trans conformer 2b. Proximity to the C-4 chiral center of 2b
effects nucleophilic addition to the less hindered, re-face of the unsaturated system.

"R, — "">Q>-° ""*sc 7

28 (s-cim) b (s-trans) 4 (R = CH,CH(CH;)CH,OBn)
Our results feature the same general outcome of cuprate additions as reported for the camphor-based auxiliaries
of unsaturated esters described by Oppolzer,8 and the unsaturated imides of Koga.?»10 However, additional
studies have demonstrated that stereoselectivity may also be highly dependent upon the nature of the cuprate
reagent. 1!
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Alcohol 5 (Scheme I) was produced upon hydride reduction of 4. Conversion to the iodide § was
followed by coupling with allylmagnesium chloride to yield alkene 7. Standard techniques led to the primary
bromide 8b, which was transformed to its Grignard reagent for addition to the aldehydic sulfone 9412 The
resulting mixture of alcohols 10 underwent oxidation, ketalization and deprotection to produce optically pure
sulfone 1] in 83% overall yield from JQ.

Following the precedence established in our myxovirescin B synthesis, the Julia-Lythgoe reductive
coupling of components 11 and 12 proceeded smoothly (Scheme II) without the usual acylation of the
intermediate f3-sulfonyl alcohols prior to treatment with sodium-amalgum. The crude product 13 was obtained in
69% overall yield as a mixture of E/Z C14-Ci5 isomers {ratio 6.5:1), with transformation to the azide 14 as
previously described.4
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Our route to myxovirescin A] necessitated a new strategy for macrocyclization. These results are
summarized in Scheme II. Oxidation of the primary alcohol at Cag to the carboxylic acid 15 without
epimerization or deprotection was crucial. This was accomplished in a mild two-step sequence employing a
Swemn reaction followed by a buffered sodium chlorite oxidation of the intermediate aldehyde.!3
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In situ, 2-methyl-2-butene served as a scavenger for electrophilic byproducts sparing the diene moiety of 15
from allylic oxidation. Esterification of 15 with 2(S)-1-tert-butyldiphenylsiloxy-2-pentanol (16)14 using the
Yamaguchi protocol!5 provided ester 17 in quantitative yield. Desilylation of 17 with n-BusN+F- in THF
afforded a 1:1 ratio of primary alcohol 18 and isomeric secondary alcohol resulting from intramolecular acyl
transfer. This rearrangement was minimized to 10% or less using HFEN in acetonitrile for the deprotection of
17. Sequential oxidations of 18, as previously described for alcohol 14, gave the carboxylic acid 19 (76%
overall yield) without a-epimerizations. Our efforts to incorporate 2(S)-hydroxypentanoate derivatives for
esterifications of 135, leading directly to 19, produced substantial isomerization at Cz and at Cy7 as well as
problems for selective hydrolysis and deprotection of esters of 19.

Finally macrolactamization was accomplished via the quantitative reduction of 19 to the corresponding
amino acid with triphenylphosphine in aqueous THF at reflux. Purification by silica gel chromatography and
subsequent cyclization utilizing Mukaiyama conditions!® for acyl activation afforded the twenty-eight membered
macrocycle in 59% yield from 19. Acid-promoted deprotection was achieved upon stirring in aqueous methanol
yielding synthetic myxovirescin A ({o] 204 +26.8° (MeOH, C = 0.38)) which was identical in all respectsto a
sample of natural product generously supplied by Trowitzsch-Kienast. 17
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