

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2013

An Imine-Based Molecular Cage with Distinct Binding Sites for Small and Large Alkali Metal Cations

Clément Schouwey, Rosario Scopelliti, and Kay Severin*^[a]

chem_201300098_sm_miscellaneous_information.pdf

TABLE OF CONTENTS

1. Syntheses	S2
2. Crystallographic data for compounds 4. CsCl and 4. (LiCl)2.	S3
2. ¹ H and ¹³ C NMR spectra of 3 and 4	S4
3. High-resolution ESI^+ -MS spectra of 3 and 4	S 6
4. Supplementary ¹ H NMR data	S 8
5. UV-VIS titrations	S9

1. Syntheses

Compounds (S2) and (S3): to a solution of S1 (1.50 g, 5.49 mmol) and tert-Butyl carbamate (2.00 g, 17.1 mmol) stirred in 50 mL degassed acetonitrile under N₂ were added Et₃SiH (2.70 mL, 17.1 mmol) and CF₃COOH (1.31 mL,17.1 mmol). The resulting solution was stirred for 3 days at r.t. The solvent was then evaporated under reduced pressure and the residue was dissolved in 50 ml DCM and the organic phase was washed with 50 mL sat. aq. NaHCO₃ and 50 mL H₂O, then dried over anhyd. Na₂SO₄. The solvent was removed under reduced pressure and the residue was purified by column chromatography (Al₂O₃ neutral deactivated with 5 w/w % H₂O; eluent: DCM to DCM/acetone 1:1) to give one fraction of S2 (493 mg, 24 %) and one fraction of **S3** (922 mg, 51 %) as pale-yellow oils. (**S2**) ¹H NMR (400 MHz, CDCl₃): $\delta = 1.45$ (s, 9H, CH₃), 3.52 (s, 3H, CH₃), 4.38 (d, 2H, ${}^{3}J = 5.6$ Hz, CH₂), 5.14 (s, 2H, CH₃), 5.42 (s, 2H, CH₂), 6.89 (d, 1H, ${}^{3}J$ = 5.1 Hz, Ar-H), 7.30-7.46 (m, 5H, Ar-H), 7.88 (d, 1H, ${}^{3}J$ = 5.1 Hz, Ar-H); ¹³C NMR (100 MHz, CDCl₃): δ = 28.4 (CH₃), 39.1 (CH₂), 57.6 (CH₃), 67.9 (CH₂), 79.6 (C_a), 98.5 (CH₂), 117.3 (CH), 127.8 (CH), 127.9 (CH), 128.4 (CH), 137.1 (C_a), 138.8 (C_a), 141.2 (C_a), 141.5 (CH), 155.9 (C_a), 156.4 (C_a); HRMS (ESI⁺): m/z = 375.1916 [M $+ H_{1}^{+}$; calcd. for $[C_{20}H_{26}N_{2}O_{5} + H_{1}^{+}$: 375.1920. (83) ¹H NMR (600 MHz, CDCl₃): $\delta = 1.44$ (s, 9H, CH₃), 4.26 (d, 2H, ${}^{3}J$ = 6.1 Hz, CH₂), 5.38 (s, 2H, CH₂), 6.73 (d, 1H, ${}^{3}J$ = 4.9 Hz, Ar-H), 7.26-7.40 (m, 5H, Ar-H), 7.61 (d, 1H, ${}^{3}J$ = 4.9 Hz, Ar-H); ${}^{13}C$ NMR (150 MHz, CDCl₃): δ = 28.4 (CH₃), 39.1 (CH₂), 68.1 (CH₂), 80.1 (C_q), 117.6 (CH), 127.9 (CH), 128.2 (CH), 128.4 (CH), 132.6 (C_q), 136.3 (CH), 136.9 (C_q), 138.9 (C_q), 152.8 (C_q), 156.9 (C_q); HRMS (ESI⁺): $m/z = 331.1667 [M + H]^+$; calcd. for $[C_{18}H_{22}N_2O_4 + H]^+$: 331.1658.

Ligand (2): a solution of **S2** (493 mg, 1.31 mmol) and **S3** (922 mg, 2.79 mmol) in 40 mL of a 1:1 v/v mixture of DCM and CF₃COOH was stirred at r.t overnight. The solvent was then evaporated under reduced pressure and the residue was co-evaporated with 5 x 20 mL of toluene. The resulting powder was suspended in 5 mL DCM, filtered, washed with Et₂O and dried under vacuum to afford **2** (956 mg, 92%) as an off-white powder. ¹H NMR (400 MHz, d_4 -MeOD): $\delta = 4.08$ (s, 2H, CH₂), 6.33 (d, 1H, ³J = 6.9 Hz, Ar-H), 7.00 (d, 1H, ³J = 6.8Hz, Ar-H); ¹³C NMR (100 MHz, d_4 -MeOD): $\delta = 37.2$ (CH₂), 107.2 (CH), 115.6 (C_q), 118.0 (C_q), 121.8 (C_q), 123.6 (CH), 145.9 (C_q), 158.3 (C_q); ¹⁹F NMR (376 MHz, d_4 -MeOD): $\delta = -77.0$ (CF₃); HRMS (ESI⁺): $m/z = 141.0661 [M]^+$; calcd. for [C₆H₉N₂O₂]⁺: 141.0664.

Complex	4 ·CsCl·(CHCl3) ₃	4 ·(LiCl)₂
Empirical formula	$C_{99}H_{108}Cl_9CsN_9O_{12}Ru_6$	$C_{96}H_{105}Cl_{2}Li_{2}N_{9}O_{12}Ru_{6}$
Formula weight	2674.32	2268.09
Temperature [K]	100(2)	100(2)
Wavelength [Å]	0.71073	0.71073
Crystal system	Monoclinic	Monoclinic
Space group	C2/c	C2/c
<i>a</i> [Å]	32.273(9)	18.7149(10) Å
<i>b</i> [Å]	21.362(3)	23.060(3) Å
<i>c</i> [Å]	36.5880(18)	26.181(4) Å
a [°]	90	90
b [°]	90.267(17)	108.343(9)
g [°]	90	90
Volume [Å ³]	25224(8)	10725(2)
Z	8	4
Density (calculated) [g/cm ³]	1.408	1.405
Absorption coefficient [mm ⁻¹]	1.227	0.93
F(000)	10664	4576
Crystal size [mm ³]	0.56 x 0.37 x 0.34	0.48 x 0.33 x 0.17
Theta range for data collection	3.01 to 25.00°.	3.03 to 25.00°.
Index ranges	-38 ≤ h ≤ 38	-21 ≤ h ≤ 22
	0 ≤ k ≤ 25	-27 ≤ k ≤ 27
	$0 \le I \le 43$	$-31 \le k \le 31$
Reflections collected	21558	55785
Independent reflections (R _{int})	21558 (0.0000)	9335 (0.0500)
Completeness to theta = 25.00°	97.1%	98.6%
Absorption correction	Semi-empirical from equivalents	Semi-empirical from equivalents
Max./min. transmission	0.7452 / 0.6278	0.7452 / 0.4902
Refinement method	Full-matrix least-squares on <i>F</i> ²	Full-matrix least-squares on <i>F</i> ²
Data / restraints / parameters	21558 / 840 / 1236	9335 / 276 / 574
Goodness-of-fit on <i>F</i> ²	1.045	1.069
Final R indices [I>2s(I)] R ₁ , wR ₂	0.1057, 0.2813	0.0835, 0.2215
R indices (all data) R ₁ , wR ₂	0.1335, 0.3002	0.1041, 0.2365
Largest diff. Peak/hole [<i>e</i> Å ⁻³]	1.945/-2.139	1.890/-1.245

2. Crystallographic data for compounds 4·CsCl and 4·(LiCl)₂.

2.¹H and ¹³C NMR spectra of 3 and 4

Figure S1: ¹H (top panel, 600 MHz) and ¹³C (bottom panel, 150 MHz) NMR spectra of dimer 3 in CDCl₃.

Figure S2: ¹H (top panel, 600 MHz) and ¹³C (bottom panel, 150 MHz) NMR spectra of cage 4 in CDCl₃.

3. High-resolution ESI⁺-MS spectra of 3 and 4

Figure S3: high-resolution (ESI⁺) mass spectrum (top panel: calculated isotopic distribution of charged series, bottom panel: experimental data) of **3** in MeOH.

Figure S4: high-resolution (ESI⁺) mass spectrum (top panel: calculated isotopic distribution of charged series, bottom panel: experimental data) of **4** in MeOH. Minor peaks correspond to singly hydrolysed product, MeOH adduct or K^+ adduct.

4. Supplementary ¹H NMR data

Figure S5: ¹H NMR of a 1 mM solution of 4 in CD₃OD with 10 eq. of RbCl (top); 1 eq of LiCl and X eq of RbCl, major products are $Rb^+@LiCl\cdot4$, LiCl·4 and CD₃OD@LiCl·4, minor products are $Rb^+@4$, (LiCl)₂·4 and CD₃OD@(LiCl)₂·4 (middle); 1eq of LiCl (bottom).

5. UV-VIS titrations

Figure S6: UV-VIS titration data (black) and calculated binding isotherm (red) of cage 4 in MeOH.

Figure S7: UV-VIS titration data (black) and calculated binding isotherm (red) of cage **4** in MeOH in the presence of 2.2 eq. of LiCl.

Figure S8: UV-VIS titration data of cage 4 in MeOH without (red circles) and with (black squares) 2.2 eq of LiCL.